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1 Introduction

1.1 Mathematical Braids
1.1.1 Three Representations

Let’s begin with an intuitive overview of the idea of a mathematical braid. We consider strings in
three-dimensional space, a!xed at top and bottom to the “floor” and “ceiling.” These strings can
be twisted together or crossed, but must always flow downwards. No doubling-back is allowed. We
imagine the strings to be made of infinitely thin rubber " stretchable and shrinkable. They can
bend and move, so long as they never double back or intersect one another. This is the sort of image
to keep in mind:

Mathematically, there are two ways to define a braid : topologically or algebraically. My Lean
formalization uses the algebraic definition. I will present a sketch of the topological definition below,
which is useful to get a sense of the mathematical object described, and to follow the historical
discussion in Chapter 4. This project follows the definitions and results from Dehornoy in his
textbook “The Calculus of Braids” [13].

Topologically, we first define a “static” geometric braid on n strings. A geometric braid is a set
of n continuous curves Zk, 1 → k → n, in R3 (called “braid strands”) where all Zk start along one
line and end along another " without loss of generality, let us say Zk starts at (k, 1, 0) and ends at
(j, 0, 0) for some 1 → j → n. Braid strands may not intersect each other; they also may not “double
back” : for any y

→ ↑ [0, 1], Zk intersects the plane y = y
→ exactly once (and thus at least once, so

braid strands have no splits or gaps). The set of geometric braids on n strings is called GBn.
Now, two geometric braids are considered equivalent if one may be continuously deformed into the

other, where the object remains a geometric braid at all points in the deformation. This deformation
may be applied either directly to the braid strands themselves (in which case it is a homotopy), or
to R3, the space in which the geometric braid lives1 (an ambient isotopy). Since the geometric braid

1Often, one bounds the braid within a cube in R3, and needs only to apply the ambient isotopy to said cube.
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lives inside R3, it will be deformed along with the entire space. Dehornoy proves these two notions
are equivalent, and so we may simply use ↓n to denote the deformation relation on braids with n

strands. In practice, one defines a homotopy from one braid to another, and thus concludes the two
braids isotopic.

Thus, we define the set of braids on n strands, Bn, to be GBn/ ↓n, the set of equivalence classes
of GBn under ↓n. This is the first representation of a braid.

For any braid, we may consider its projection into 2-d space, with over- and under-crossings
labelled in some manner. Two projections of braids are equivalent if and only if the three-dimensional
geometric braids they each represent are equivalent.

At the moment, our projection allows for braids with multiple strands crossing at the same
height, or even running one behind the other for an extended length :

Luckily, by pulling the green strand to the left, this is equivalent under ↓3 to

This is encouraging. In fact, we can define a set of “nice” geometric braids GBn
nice where all

of the crossings are separated out (no two occurring at the same height), the strand crossings are
at exactly one point (no strands running behind another), and no pathological oscillation occurs
(every geometric braid is equivalent to one whose strands are built out of finitely many straight-line
segments " this comes directly from the definition of GBn).

We may then give an equivalence relation that only allows deformation through other “nice”
geometric braids, ↓nice

n . And quite nicely, Dehornoy proves Bn = GBn/ ↓n is isomorphic to
GBn

nice
/ ↓nice

n . Thus, every projection is equivalent to some “nice” projection, where nice-ness of a
projection is defined almost exactly as it is for geometric braids. This is the second representation
of braids.

We are able to pass from 3-d geometric braids to “nice” projections of those braids, losing no
information about the equivalence classes. Thanks to the features of “nice” braids, we may now
move to a simpler description of braids (our third representation). This is done by assigning a code
to every braid projection. Beginning at the top, each crossing is noted : if a strand in position i

(1 → i < n) crosses over a strand in position i+ 1, this is called ωi.

If it crosses under, we code this as ωi.

5



The three-strand braid at the center of the previous page is coded ω1ω2ω1. The braid at the very
opening of this chapter is coded ω1ω3ω2ω1ω2ω1ω3ω2.

Formally, we define an alphabet Sn = {ωi | 1 → i < n} ↔ {ωi | 1 → i < n}, and then the set of
Sn-strings is called S

→
n. (Here, an S-string is an ordered list of symbols from Sn). S

→
n also contains

the empty string ε, which has length zero. ε codes the empty braid, which has no crossings. The
empty braid on 4 strings looks like so:

Since there is always a nice projection of any braid, there is a code word for any braid. When
are the braids described by two braid codes equivalent? We could translate back to the projection,
and then to the geometric braid. That is unwieldy to work with. The idea here will be, as we have
discretized the description of the braid, so too shall we discretize the relations that hold between
braid codes representing braids equivalent under ↓n.

Clearly, the following two relations hold:

is equivalent to

That is, for any i, ωiωi is equivalent to ε.

is equivalent to

Similarly, for any i, ωiωi is equivalent to ε.

Crossings far apart can be slid up and down :

is equivalent to
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If |i↗ j| ↘ 2, ωiωj is equivalent to ωjωi.

And the following relation holds when the crossings interfere with one another:

is equivalent to

So, ωiωi+1ωi is equivalent to ωi+1ωiωi+1

The fact that these hold is almost immediate. The trickier thing to show is that these su!ce
to encapsulate all possible isotopy/homotopy deformations. A full proof of this fact is beyond the
scope of this overview. It is done by meticulous casework on possible moves on a braid projection,
where the strands in the projection are made of finitely many straight-line segments.2

We thus have a set of braids on n strands for any natural number n, which can be described
in three manners (as equivalence classes of either three-dimensional diagrams, two-dimensional
projections, or strings of symbols). We next look to show an algebraic structure on this set. Two
braids on the same number of strands may be concatenated by appending the bottom ends of one
to the analogous upper ends of the next one. This operation is well-defined on projection diagrams
and also on codes for braids (here, in the usual string concatenation sense). Notably, concatenating
the empty braid either above or below any braid (geometric, projection, or code) leaves the braid
unchanged. Further, concatenation of braids is associative. Thus, we see the beginnings of an
algebraic structure on the set of braids " we have a binary operation, an identity element, and the
associativity property for our operation. Now, let’s look for inverses.

We can “untangle” any braid by appending another given braid below it. Geometrically, we may
do this by appending a vertical mirror-image of the braid below it.

2Dehornoy gives another theorem stating that every braid is equivalent to one whose projection consists of a finite
number of straight-line segments
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As an illustration, consider the braid ω1ω2ω1 and its mirror image ω1ω2ω1 :

We may then untangle the braid, working from the middle out. First, untangling the green and
black:
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Next, the pink and black:

And then that very last step of pulling the pink o# of the green give us the identity braid:

Voila! So, we have a geometric procedure for “undoing” any braid. In terms of braid codes, this
corresponds to reversing the order of the symbols in the code, and for each, switching out its overline
: every ωi becomes ωi and vice-versa.

We now have a binary operation (concatenation), an identity element (the empty braid), and
inverses (mirror image). Thus, braids form a group! The elements are equivalence classes of a given
geometric braid, projection, or code.
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1.1.2 Not a Knot!

Let us note here briefly the mathematical definition of a knot,3 and the relationship knots have
with braids. Intuitively, one can consider a rubber string, glued together at the ends, which can be
stretched, shrunk, twisted, and moved about so long as it never self-intersects.

That is, a knot is a closed path in 3-dimensional space which does not self-intersect; namely, an
embedding of the circle (S1) into R3. Much like braid equivalence, knot equivalence is defined by
ambient isotopy. The question to determine if two knots are equivalent is thus : can I twist R3 –
the ambient space – so that my knot lands up on top of the goal knot?

Formally, a knot A (meaning a function A : S1 ≃ R3) is equivalent to a knot B i# there exists
some continuous F : [0, 1] ⇐ R3 ≃ R3 such F0 ⇒ A = A and F1 ⇒ A = B. So F ⇒ A is a continuous
sequence of knots.

We may also consider the projection of a knot. Here again, there are a few basic moves which
preserve knot equivalence, called Reidemeister moves.4

3image from Wikipedia : Square Knot
4image from Wolfram : Reidemeister Moves
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In the late 1920s, J. W. Alexander showed that every knot can be represented as the closure of a
braid [2]. This simply means glueing the top end of a strand to the bottom end of the strand which
lands below it. (Image from Cheng and Lin, [9])

Knots do not have a concatenation operator and thus lack the group structure found on braids.
The mathematics used to study knots has become distinct from the algebraic approach used for
braids. While it is possible to solve the knot isotopy problem (are two given knots equivalent) in
the general case, current known approaches to even the unknot problem (is a given knot equivalent
to the unknot, which is just a plain circle) do not run in polynomial time [19]. So, knots are often
compared using knot invariants " properties that remain the same for all equivalent knots. These
invariants are designed to be computationally e!cient, and run in polynomial time. Many are not
complete " that is, non-equivalent knots may share the same knot-invariant value. But if two braids
have di#erent invariant values, one can be certain the two knots are not equivalent.
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Braids provide one such invariant, and a formalized theory of braids thus does help make progress
on knots. Ultimately, despite both being mathematical models of strings in space under (perhaps
restricted) ambient isotopy, the type of mathematics used to study each is largely distinct. (We shall
see in the historical section that it was not always so!)

1.1.3 Applications

For a brief expedition into the wonderful world of braids, let us look at a few examples of their use.
Certainly, we make braids with ribbons and dough. Chemists have discovered naturally-occurring
braided structures in molecule chains, and have used this insight to attach lab-synthesized molecule
chains to one another via braiding, not atomic bonds [21]. They use the mathematical language of
braids to communicate these techniques.

Robots with power cords can get tangled. One can model this situation with braids, and e!ciently
outlaw paths which lead to messy entanglements [7]. Configuration spaces, associated with robot
motions and factory-floor movement, can be studied via their associated braid group [18]. One
considers their two-dimensional motion across a floor, and make the third dimension time. Strings
in a braid cannot intersect, and neither can the robots or factory workers.

If we stay in the realm of strings, braids are being used to formalize machine knitting by
researchers out of CMU and UW. One can consider a braid with extra generators (these generators
are small knot-like objects embedded into the braid). This is called a “fused braid.” The normal
braid relations are preserved, and a few more are added. A solution to the original braid problem
can provide insights into an eventual algorithm for the fused-braid model. Algorithms are being
developed which function well empirically, so there is a market for proofs!

Braid groups also appear devoid of any connection to twisted strings. Their properties of non-
commutativity along with a solvable word problem make them a tempting candidate on which to base
post-quantum security protocols. An initial, straightforward approach used the conjugacy problem
(given braids A and B, does there exist a braid G such that A = GBG

↑1?) for encryption [22].
Alas, this fell victim to heuristic, probabilistic attacks. Nevertheless, new systems based on di#erent
braid problems are being theorized [8].

1.2 The Lean Theorem Prover
Lean is a functional programming language and interactive theorem prover based on dependent type
theory. Leonardo de Moura launched Lean in 2013; the language is now on version 4. Mathematicians
worldwide use Lean to formally verify proofs across mathematics, from undergraduate basics to
the cutting edge of research. A large collaborative project to formalize as much of mathematics as
possible in one central repository, named Mathlib, is ongoing, and currently counts 367 contributors.
5 From algebraic geometry to topology to analysis, Mathlib is ever-growing into all corners of
mathematics.

As far as I can tell, there has been no formalization of the braid group in Lean, nor in any other
theorem prover. Coxeter groups, another type of presented group which is similar in structure to
the braid groups, are the object of an ongoing formalization project.6 Knots and a few invariants
thereof were formalized in Isabelle/HOL by Prathamesh in 2015 [28]. Alas, the mathematics used
to study braids (presented groups, localizations, orderings) is of an entirely di#erent sort than that
used for knots (polynomial invariants). While it is not formal mathematics, it is worth noting that
there are a number of computational packages for working with braids, for example one in MATLAB
[31].

5Mathlib statistics
6https://www.majiajun.org/formalizing-coxeter-group-hecke-algebra-and-kazhdan-lusztig-theory-in-lean/
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This mathematics behind braids connects deeply with fundamental concepts in abstract algebra.
The project of defining braids led to the construction of presented monoids and rewrite systems in
Lean. These arise from the study of computability, and hopefully will find much re-use in future
projects : confluence, Post-Markov theorem, Knuth-Bendix completion, etc.

In terms of braids themselves, much current research is focused on developing faster algorithms
to resolve the braid word problem. Having a formal foundation for braid definitions and basic
properties should aid in verifying the correctness and termination of these algorithms.

One can in fact implement these algorithms in Lean and execute them using the #eval function.
But Lean is not limited to computable functions or constructive proofs. One can choose to use Lean
with constructive or classical logic. When proving correctness of an algorithm, for example, the
algorithm must be computable but the proofs of correctness and termination need not be.

1.3 Project Overview
This thesis is a report on the progress made to date of a larger project to implement a verified
algorithm for solving the braid word problem7 in Lean. I am working on Dehornoy’s subword-
reversing algorithm, and throughout have followed his textbook [13]. I have broken the project into
four stages:

1. Defining braid groups

2. Defining a braid monoid and connecting it to a braid group

3. Defining a grid structure and connecting it to re-writing

4. Implementing the algorithm

Items 1 and 2 have been formalized; they are discussed in chapters 3 and 4, respectively. Item 3
requires a novel proof in three stages; in chapter 6 I give a proof sketch of the first stage, rigorous
pen-and-paper proof of the second stage, and formalized proof of the third stage. I have not yet
begun to formalize item 4; I have given a sketch of the procedure in chapter 5, along with the
formalization of a number of requisite mathematical structures.

Beyond this, chapter 2 opens with a historical overview of how braids became the algebraic object
they are today.

7Details will follow; essentially, given two braid codes, do they represent braids equivalent under ambient isotopy?
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2 The History of Mathematical Braids

We give here a sketch of the history of mathematical ideas of braids. Knot theory will be discussed
to give context to the development of braids, and when it is intrinsically linked (i.e. Alexander’s
theorem that every link is a closure of some braid). The primary focus, however, will be on braids.
We aim to trace the emergence of an algebraic way of thinking about these inherently physical,
topological objects.

2.1 Early History
As far as I have seen, the first mathematician to mention braids is Vandermonde (1735-1796), a
French violoinist-turned-mathematician [3]. His approach to the problem is a precursor to modern
topology. Topology had not yet been named as such – at the time, it was called “le problème
de situation” or “analyse situ.” Thus, Vandermonde’s 1771 paper was entitled Remarques sur les
problèmes de situation [vandermonde_mathematicien_remarques_1771]. It discussed two
related problems : describing intertwined strings in 3-dimensional space, and the motion of a knight
on a chessboard (compare his notion of braids as the paths of knights on a chessboard to today’s
research on braids as the paths of robots in factories!).

Vandermonde approaches the problem from a practical standpoint, considering how an artisan
might understand and communicate his process:

Quelles que soient les circonvolutions d’un ou de plusieurs fils dans l’espace, on peut
toujours en avoir une expression par le calcul des grandeurs; mais cette expression ne
seroit d’aucun usage dans les Arts. L’ouvrier qui fait une tresse, un réseau, des nœuds,
ne les conçoit pas par les rapports de grandeur, mais par ceux de situation ce qu’il y
voit, c’est l’ordre dans lequel sont entrelacés les fils. (p. 566)

[Whatever the twistings and turnings of one or more strings in space, one can always
describe them by magnitudes; but this expression would be of no use in the Arts. The
worker who makes a braid, a fabric, a knot, conceives them not by relations of length,
but by those of relative position, the order in which the the threads are interlaced.]8

We see an abstraction from properties of the physical strands like length and exact coordinate
position in space. Rather, the importance is on their relations and intertwinings with one another.
Vandermonde claims an artisan understands his work by the steps of twisting and weaving the
strands, and thus attempts to give a mathematical notation for such a procedure:

Il seroit donc utile d’avoir un système de calcul plus conforme à la marche de l’esprit de
l’ouvrier, une notation qui ne représentât que l’idée qu’il se forme de son ouvrage, & qui
pût su!re pour en refaire un semblable dans tous les temps. Mon objet ici n’est que de
faire entrevoir la possibilité d’une pareille notation, & son usage dans les questions sur
les tissus de fils. (p. 566)

[It would thus be useful to have a mathematical system more closely mirroring the
thought process of the artisan, a notation which represents his own conception of his
work, and could serve as instruction to recreate the object years later. My goal here is
to show the possibility of such notation and its application to textile geometry.]

8this and other French translations are my own; the translations are loose and not intended for precision
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He desires a notation for strings in space which takes into account topological properties moreso
than geometric ones of distance and angles. And future generations of mathematicians will heed his
call!

Vandermonde considers this process as a reduction, a way of abstracting a messy problem into a
simpler, more manageable form which preserves just the relevant information:

je le réduis à une simple opération d’Arithmétique, faite sur des nombres qui ne représentent
point des quantités, mais des rangs dans l’espace. (p. 566)

[I reduce this to a simple arithmetic operation, based on numbers which represent not
magnitude, but denote a chunk of three-dimensional space.]

Although he will give numbers to represent positions, he is clear that his numbers do not relate
to distance or length, but rather relative “slots” in space. Let’s take a look:

Space is divided into rectangular prisms. It is not the relative size of the prisms that matters,
but their relative position to one another. With that setup, he can consider a twisted string moving
through space :
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We note that it is not the crossings that are labelled " rather, at a crossing, the position of each
involved string is noted. This method is used to keep track of over- versus under-crossings, which
are drawn distinctly on the diagram. Vandermonde’s emphasis on the practical fiber arts occurs
throughout - the largest diagram is of knitting.

Next up on the historical run-down is Gauss (1777-1855). He has an interest in topology ; he
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bemoans that

Of the geometria situs, which Leibniz foresaw and into which only a pair of geometers
(Euler and Vandermonde9) were granted the privilege of taking a faint glance, we know
and have, after a century and a half, little more than nothing. (Werke, Vol. V, p. 605.
Cited and translated in Epple [15])

And so, he takes up the task! A single page of his notebook [17], beautifully analyzed by Moritz
Epple [15], gives a glimpse into Gauss’s view of braids :

No date is given, but based on the surrounding pages, Epple estimates this was written between
1815-1830. On the top-left there is a sketch of the braid, whose strands are labelled a, b, c, d. Five
crossings occur in the braid; the regions between them are labelled 1 through 6. This is done to
keep track of the string positions before and after each crossing.

To the right, Gauss made a table showing the change in position of the strands. He also denoted
the twists using imaginary numbers. This seems to have been a work-in-progress; no clear rule for
which strand in a twist is marked with an i seems to hold. In the first crossing, where strand 3
crosses above 2, we obtain 1 2 4 (3+i). But then the next, when 1 crosses over 2, is (2+i) 1 4 (3+i),
not 2 (1 + i) 4 (3+i). In any event, Gauss was the first to tabulate the crossings, and study braids
in that way.

Below the table, he writes

What matters is to represent the whole [Inbegri#] of the entanglement [Verwicklung] in
such as way as the aggregate of its parts that one sees which parts destroy one another.
(translation from Epple)

9Based on Gauss’s letters to Olbers in 1802, we know he had read Remarques sur les problèmes de situation
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These “parts” may be seen as a precursor to the idea of generators : an elementary part here
is a single crossing. By representing the whole as an “aggregate of its parts” we see the idea of
concatenation. The idea of one part “destroying” another is an early idea of braid inverses : which
braids or sub-parts of a braid can be untangled into the empty braid? This brief note shows Gauss
had started to think of braids in a sort of algebraic manner, by decomposing and combining discrete
parts.

The next remark, in the middle of the page, reads

Probably it will su!ce to list the half twists one of line around the other according to a
certain sense of rotation. (translation from Epple)

And so Gauss does consider orientation as an important part of structure. To the side, he starts
to play with some orientations - “Sud”, “Nord”, “Vor” and “Nach” (“South”, “North”, “Before”, “After”).

He continues on with a new method for denoting “Im obigen Beispiel” [the above example]. Gauss
tries a new method of denoting the strand crossings, based on the names of the strands (not Artin’s
method based on the current position of the strand) : cd, ab, da, ad. This he scratches out, and
begins to start again. At the bottom, he conjectures:

Man braucht nur in jeder Linie zu zählen wie oft + mit - wechselt [You just need to
count in each line how often + alternates with -] (my translation)

This, paired with the drawing on the lower-right (showing the linking number of two strands - the
number of times one wraps around the other) suggests he was thinking to count the negative/positive
twists a strand experiences.

One wonders in what context Gauss began to think of braids. Although he did doodle and study
knots, this came later in his life, well after the braid drawing was sketched. We see on the next page
a drawing of hexagonal weaving; this may suggest he was indeed thinking of Vandermonde’s work
on weaving patterns.
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Moritz Epple argues that his interest in braids came not from their connection with knots, but
rather “from the exact sciences of of astronomy, geodesy, and electromagnetism” (p. 52). At the
time, Gauss has been trying to predict asteroid orbits, as well as some working out calculations
in electromagnetism which depended on wires coiling around one another. Again, the practical
applications led to an attempt to define, describe, calculate, or otherwise work mathematically with
braids.

Gauss’s student Johann Listing (1808-1882) picked up on Gauss’s interest in knots, publishing
a book “Vorstudien zur Topologie” [23]. Notably, he is the first to use the word topology; unsur-
prisingly, the mathematical focus is on topological, not algebraic, ideas about knots. Twenty years
later, physicists once again took an interest in knots, due to a theory that atoms had a knotted
structure proposed by Lord Kelvin [32]. His friends James Clerk Maxwell and Peter Guthrie Tait
(1831-1901) spent considerable e#ort looking into knots; Maxwelll calculating linking integrals and
Tait tabulating knots [29]. This tabulation work occupied a great deal of time and e#ort amongst
a number of mathematicians " while Tait is often given all the credit, his contemporaries Thomas
Kirkman and Charles Little also made great progress, both independently and late in collaboration
with Tait [29]. While explicit study of braids was not apparent during this period, the knot theorists
kept the field alive until the early 1900s, when a new wave of knot theorists picked up braids once
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again.

2.2 Journey to Algebra
As we move into the twentieth century, braids have still not appeared by name in any writing. In
1923, the American James Waddell Alexander (1888-1971) from Princeton gives a description of
what we would now call as “closed braid”. The idea is to take a braid, and glue together the top
ends to the bottom ones, forming either a knot or a link (a knot with multiple components). Here is
a planar representation of such a closed braid, (taken from paper on braid representations of DNA
by Chen and Lin) [9] :
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Alexander relates this to a link in the following manner in his paper “A Lemma on Systems of
Knotted Curves” [1] :

Consider a system S made up of a finite number of simple noninteresting closed curves
located in real euclidean 3 space. The curves S may be arbitrarily kntted and linking, but
we shall assume, in order to simplify matters as much as possible, that each is composed
of a finite number of straight pieces. The problem will be to prove that the system S is
always topologically equivalent (in the sense of isotopic) to a simpler system S

↓, where
S
↓ is so related to some fixed axis in space that as a point P describes a a curve of S↓

in a given direction the plane through the axis and the point P never ceases to rotate in
the same direction about the axis. (pg. 93)

S
↓ is thus a closed braid, if not described in such words. We note the discrete nature of this

definition and its proof : the division of the curve into finitely many straight-line segments. Then
operations merging or splitting these toothpick-like segments are used to prove equivalence.

Epple writes that in the 1920s and 1920s, work in knot theory was presented as “built around
diagram combinatorics rather than manifold topology (p. 151)” [14]. It was a popular topic " in
fact, a bit of an arms race. Alexander and Reidemeister, a German mathematician from the same
time period, developed similar knot invariants. Both were presented in a modernist, formal algebraic
manner. Was it true that this new combinatorial, diagrammatic methodology led to new insights?
Epple argues it was not. He describes in detail how each invariant was derived from geometric
notions. Yet these geometric notions were not presented as primary in either paper. Alexander
wanted to professionalize mathematics, and so he wrote in this algebraic manner to fit in with the
culture at Princeton.

Reidemeister was mentored by great German minds like Dedekind (who he fondly referred to
as an uncle10). Through Dedekind, one can trace Reidemeister’s academic lineage back to Gauss
and his abstract approach to mathematics. Dedekind develops in his paper “Was sind und was
sollen die Zahlen” [11] an abstract method “dessen Absicht auch von Gauß gebilligt wurde [whose
intention/design was also approved by Gauss]”, as he proudly points out. Dedekind’s structuralist
program grew from this methodology, influencing Hilbert and ushering in his axiomatic method, as
seen in his “Grundlagen der Geometrie.” Reidemeister, having had a close personal connection with
Dedekind at the start of his career, also follows in this abstract tradition.

As part of a Vienna school of philosophy, 11 Reidemeister wrote a philosophical article entitled
“Exact Thinking” [30] which emphasized the importance of studying the “combinatorics of sign
systems” (Epple, 156). Hence, Reidemeister’s philosophical circle shaped his presentation of the
material. Moreover, Reidemeister had a deep interest in knots (he did fundamental work; the
“Reidemeister moves” for showing knot equivalence are named after him). Surely he would have
been aware of the work of Max Dehn and Paul Heegaard, which, according to the historian of
knots Peter van der Greind [33], “showed the knot problem could be formulated entirely in terms of
arithmetic, i.e. combinatorics.” Whether or not their original work was discovered via geometrical
reasoning (another future avenue to explore), their presentation in terms of combinatorics certainly
would have encouraged Reidemeister to follow suit - if not in discovery, at least in the write-up!

Now we have made it to the late 1920s, in which appears the father of the modern theory of
mathematical braids : Emil Artin. In his first paper Theorie der Zöpfe (1926), he gives a geometric
description of braids, an algebraic presentation, as well as a proof that the two coincide. Notably,
Artin also had a connection through Vienna; he spent time there and was close with Otto Schreier,
another mathematician working on braids. His methodology was thus in many ways similar to that

10thank you Wilfried for the information!
11He was the organizer of and moderator at the 1930 Königsberg meeting with Carnap, von Neumann, Brouwer,

and Gödel)
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of Reidemeister. Artin’s overarching goal is to “arithmetize” the notion of braids (p. 50). Twenty
years later, having moved from Germany to Princeton, he returns to the subject, unhappy with the
proofs in his first paper. He opens his 1947 Theory of Braids with the following :

A theory of braids leading to a classification was given in my paper “Theorie der Zopfe”
... Most of the proofs are entirely intuitive. That of the main theorem in [Section] 7 is
not even convincing. It is possible to correct the proofs. (p. 101)

Michael Friedman has made a careful comparative study of the two papers. He highlights, first,
that

in order to facilitate an understanding of what the composition of braids looks like in
the braid group, Artin immediately introduces a restriction ... "one that is completely
visual. As he notes, a braid should not turn in reverse: ‘In Figure 1 [see below] a weaving
[Geflecht] is drawn as an example, one that we do not consider a braid [Zopf]’ (Artin
1926, 48). Such a restriction is given no further algebraic interpretation.

While there is a way to describe this in terms of intersections with every z-plane, Artin was
working with a system (projection diagrams) which could not easily represent this notion. The 1947
paper recognized this, and made the switch to discussing braid coordinates.

The second use of geometric intuition occurs when Artin defines the braid relations in the braid
group. Friedman notes,

The proof of these relations is entirely visual. Thus, for example, Artin explicates that
one can ‘extract from the [below] figures’ the relation ω

±1
i+1ωi = ω

↔1
i ωi+1ω

±1
i ω

±1
i+1 from

which he induces the relation ωiωi+1ωi = ωi+1ωiωi+1. The proof relies on the diagrams
depicting what happens when one ‘shifts’ a crossing ωi from one side of the crossing ωi+1

to the other.
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This was completely re-worked in the 1947 paper, but it hadn’t lay dormant in those two decades!
Between the two papers of Artin’s, a small cottage industry of mathematicians worked to make the
proofs of the first more rigorous, and to also provide alternate descriptions of a braid more suitable
for algebraic proofs. Burau discussed matrix representations [6]; Bohnenblust worked out algebraic
versions of a number of Artin’s proofs [5] (and in fact his article helped supplement Artin’s 1947
work). Bohnenblust, having worked closely with Artin, gives this introduction to his (Bohnenblust’s)
work on braids:

These results were fully recognized in the paper of Artin mentioned above [1926] and led
in particular to a classification of braids. The proofs, however, are partially intuitive.
In a recent paper Artin returned to this question making use of a more direct approach
which permits an elegant and completely rigorous treatment of the problem. ... By its
nature the problem is geometrical and throughout the major part of his paper Artin
makes extensive use of geometrical considerations. In the present paper a purely group-
theoretical problem is considered.

So, although Artin had obtained rigorous proofs in his 1947 paper, Bohnenblust still strove to
make those proofs algebraic (as well as providing some purely-algebraic proofs to supplement gaps
in Artin’s work, which Artin had intentionally skipped, knowing Bohnenblust was also publishing).

2.3 The Leningrad Research Group
So far, we have only discussed European and American mathematicians. What was going on behind
the Iron Curtain during all this excitement over braids?

Let’s set the stage : Leningrad, 1930s. Markov (Jr.), Ivanovsky, Weinberg. These three
mathematicians had some contact with the western world; they had read Artin’s work. However,
communications were limited under Stalin. Western scientists struggled from an inability to read
Russian, in which Stalin insisted scientific works be published; Soviet scientists su#ered from govern-
ment restrictions on communication [20]. However, through the perseverance of Pavel Aleksandrov,
an international topological conference was organized in Moscow in 1935 [4]. A pamphlet found
nestled in Kolmogorov’s papers (pages 590-593) [36] listed the scheduled speakers, including James
Alexander, Kurt Reidemeister, Egbert van Kampen (whose diagrams we will see appear in braid
theory!), A. A. Markov (Jr.), and A. Ivanovsky.

It appears that Ivanovsky did not end up giving a talk [4]. Nevertheless, this conference put
Markov and his collaborators in contact with Western mathematicians. Markov’s talk was titled
“On the Free Equivalence of Closed Braids” so certainly some talk of braids occurred!

Let’s now look a bit more specifically at what work the Leningrad group did. Andrey Andreyevich
Markov (1903-1979), son of the famous Andrey Andreyevich Markov, led a small group of researchers
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in braid theory in Leningrad in the 1930s. The papers produced by this group discuss algebraic braids
with no mention of geometry whatsoever. Nevertheless, they were viewed as belonging to topology.
In a review of the past 30 years of Russian mathematics from 1949 (covering 1917-1947) [35], we
read

$%&’(’)*% +, )-.’( /’0%(/&+1 2-(%2-(+&’0 ’ 3)455-1, ,-6-77*1 ’5)%6%89:;+2+
/’’(7’<%7+92+, ’(7’/9(/9 & (’5’8’3++, (. %. 8%=-( 07% 5)%6%8’0 7-/(’9;%3’ ’.,’)-;
(-&’0*, 7-5)+2%), )-.’(* >. >. ?-)&’0- ’ 3)455-2 &’/.

“Some of the works by Soviet mathematicians relating to finitely presented groups pertain
to topology; they lie outside the scope of this review. Such are, for example, the works
of A. A. Markov on braid groups” (my translation)

Markov wrote two papers on braids : The first was “Über die freie Äquivalenz der geschlossenen
Zöpfe” [26] in 1936, a write-up of his conference talk. Here, he picked up a thread from Alexander’s
work showing every link can be written as a closed braid. Notably, the closure of the conjugation
of any braid (given a braid word w, conjugation by another word a makes the word awa

↑1) gives
the same link as the closure of the braid itself. Intuitively, a and a

↑1 can be slid “around” to meet
one another in the back and cancel out. Markov gives some more moves that do not change a closed
braid, proceeding in a purely algebraic manner. At the end, he conjectures that the moves he has
described are those necessary and su!cient to transform a closed braid to any other equivalent closed
braid.

This is picked up and proved by his collaborator N. M. Weinberg in a brief report “Sur l’équivalence
libre des tresses fermées” from 1939 [34]. We know very little about Weinberg; he had also published
on topology in 1941 in his paper “On the regular closure of topological spaces” [35].

Markov’s second paper appeared in 1945, entitled “Foundations of the Algebraic Theory of
Tresses” [25], and beats out Artin and Bohnenblust’s 1947 update to the 1926 paper by about
two years. Markov describes the situation as such :

@’908%7+% 7-/(’9;%A /(-(B+ 0*,0-7’ /8%64:;+2+ ’./(’9(%8B/(0-2+. C-//4=6%7+9
Artin’a ’/7’0-7* 7- 3%’2%()+D%/&’A +7(4+E++ + 7% .%, 45)%D7* 0 ’(7’<%7++ /()’3’/(+.
F%8-(%8B7’ .*8’ +2%(B .’8%% /()’3’% 6’&-,-(%8B/(0’ ’/7’07*1 )%,48B(-(’0 Artin’a.
?’=%( .*(B, 2’=7’ .*8’ .* 6’/(+374(B 5’87’A /()’3’/(+, 6’5’87+0 &-&-8+.’
)-//4=6%7+9 Artin’a. >0(’), ’67-&’, 5)%65’D%8 +7’A 54(B. G2%77’, 0 H(’A /(-(B%
3%’2%()+9 5’87’/(B: +/&8:D%7-, + (%’)+9 &’/ /()’+(/9 / /-2’3’ 7-D-8- 7- D+/(’
-83%.)-+D%/&’2 ’/7’0-7++.

The appearance of this article is due to the following circumstances. Artin’s reasoning is
based on geometric intuition and is not impeccable in terms of rigor. It would have been
desirable to have a more rigorous proof of Artin’s main results. Perhaps it would have
been possible to achieve complete rigor by somehow supplementing Artin’s reasoning.
The author, however, preferred a di#erent path. Namely, in this article geometry is
completely excluded, and braid theory is built from the very beginning on a purely
algebraic foundation. (my translation, with assistance from A. Malyutin via e-mail
correspondence)

Markov worked along with Ivanovsky to give a new solution to the braid word problem. He
describes,

I)’2% (’3’, 6-77’% Artin’oM )%<%7+% 5)’.8%2* (’=6%/(0- 5)%6 /(-089%(/9 7%6’/(-(’D7’
46’.7*2 689 6-8B7%A<+1 +//8%6’0-7+A 0 H(’A ’.8-/(+, ’/’.%77’ 5)+ +,4D%7++
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5)’.8%2* /’5)9=%77’/(+. C%<%7+% H(’ 7% 5)’8+0-%( /0%(- 7- /()4&(4)4 3)455*
&’/. @’H(’24 0 7-/(’9;%A /(-(B% 2* 6-%2 6)43’% )%<%7+% 5)’.8%2* (’=6%/(0-,
&’(’)’%, &-& 7-2 &-=%(/9, /0’.’67’ ’( H(+1 7%6’/(-(&’0. J(’ )%<%7+%, 7-A6%77’%
> . G0- 7’0/&+2, ’/7’0-7’ 7- 4/(-7’08%7++ 7%&’(’)’A 7’)2-8B7’A K’)2* &’/.
L6+7/(0%77’/(B H(’A 7’)2-8B7’A K’)2* + +,’2’)K+9 >3$5’’0- 5)%6 /(-08%7+9
3)455* &’/ 6’&-,*0-:(/9 7+=% ’67’0)%2%77’. $’)2-8B7-9 K’)2- 6-%( 0-=7*%
/0%6%7+9 ’ /()4&(4)% 3)455* &’/, (-& &-& ’7- 5’,0’89%( 5’/()’+(B 7’)2-8B7*A
)96 H(’A 3)455* / +,0%/(7*2+ K-&(’)-2+.

In addition, the solution of the identity problem given by Artin does not seem to
be convenient enough for further research in this area, especially when studying the
conjugacy problem.12 This solution does not shed light on the structure of the braid
group. Therefore, in this article we give another solution of the identity problem, which,
as it seems to us, is free from these shortcomings. This solution, found by A. Ivanovsky,
is based on the establishment of a certain normal form of braids. The uniqueness of
this normal form and the isomorphism of the Artin representation of the braid group
are proved below simultaneously. The normal form gives important information on the
structure of the braid group, since it allows one to construct a normal series of this group
with known factors. (my translation)

As we can see, this is done using purely group-theoretic terminology and methods. A mysterious
“Ivanovsky” is mentioned here. Records are scant; Ivanovsky was a post-graduate student of Markov’s
who was killed in the Second World War (page 8 of [24] and personal correspondence with the author).
As we noted above, he was scheduled to give a talk at the First International Conference on Topology
in Moscow in 1935 entitled “Considerations algèbriques sur le problème d’identité dans le groupe de
tresses”. Unfortunately, I have been unable to find any writing about the content of the planned
talk. From the title, we may surmise that Ivanovsky was ready in 1935 to share this new solution
to the braid word problem. In that case, Markov and Ivanovsky beat Artin to the punch by over a
decade. Moreover, in the same 1945 paper, Markov notes that Weinberg had an algebraic method
for determining the center of the braid group :

M &’7E% /(-(B+ 2* )-//2-()+0-%2 /+/(%24 5)’+,0’69;+1 H8%2%7(’0 3)455* &’/,
5’8%,74: 689 6)43+1 +//8%6’0-7+A. M D-/(7’/(+, / 5’2’;B: -H(’A /+/(%2* $.
M%A7.%)34 46-8’/B 7-A(+ E%7() 3)455* &’/.

At the end of the article we consider a set of generators for the braid group, useful for
other research. In particular, with the help of this system N. Weinberg managed to find
the center of the braid group.

He thus seems to have beat Artin by at least five years.13

2.4 The Modern Algorithmic Approach
Once braids had appeared on a firm algebraic footing, worked turned to making algorithms to solve
braid problems e!ciently.

Notably, as far back as Artin’s 1926 paper algorithms appeared: Artin describes a combing
algorithm which separates out one strand at a time. We will not go into details, but the finished
product looks something like this:

12Given two braids a and b, does there exist a braid c such that a → cbc→1?
13Very little is known of Weinberg, but it appears he died in the Siege of Leningrad, placing this discovery before

circa 1942
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The algorithm is by no means e!cient: Artin writes

Although it has been proved that every braid can be deformed into a similar normal
form the writer is convinced that any attempt to carry this out on a living person would
only lead to violent protests and discrimination against mathematics. He would therefore
discourage such an experiment (p. 126)

Thankfully, better solutions have appeared! In his 1965 doctoral thesis from Oxford,14 Frank
Garside gave a new solution to the braid word problem (and the conjugacy problem). This he
published as “The Braid Group and Other Groups” in 1969 [16]. He considered a braid monoid and
its embedding into a braid group. The mathematics for this, Ore localization, was first published
by Oystein Ore in 1931 [27]. His article, “Linear Equations in Non-Commutative Fields” addressed
the problem of finding a determinant in a matrix whose entries were elements of a non-commutative
field. In order to solve this, he gave conditions that a non-commutative ring must satisfy in order to
be localized - common multiples and commutativity. The question remains: how did Garside come
across this result, and why did he think to apply it to the case of braids?

Firstly, although Ore’s result could quickly be shown to hold for monoids (monoids are a simpler
structure than rings; rings add a second binary operator and additional axioms to the monoid
structure), this was not published explicitly until 1961 [20], in the classic textbook “The Algebraic
Theory of Semigroups” by Cli#ord and Preston [10]. Garside cites this textbook, so it would appear
he did see the monoid version of Ore’s theorem. Until I get access to more of Garside’s writings, I

14Unfortunately, the British Library was hit by a cyberattack in October 2023, and has yet to restore access to
their microform copies of doctoral theses. It appears it may take a few months before I get access to this document
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can make no claim about how he came upon this result. I find it quite plausible that some geometric
intuition was used - especially for the proofs of common multiples.

As to the algorithms, Garside’s solution to the word problem uses universal denominators. Simply
put, he finds a “fraction” form for every braid group element, but the denominator (and hence the
numerator) may be far more complicated than needed. Thus, when Dehornoy considers the problem,
he is able to come up with a faster algorithm for the word problem by his subword-reversing method.
Dehornoy’s method runs in polynomial time on the length of the input braid word l. He does not
bother to give a strict bound, but notes that in the worst case, it is in O(l2).

Now, research on braid groups has a bent towards faster solutions to the word problem (and the
conjugacy problem, amongst others). We stop our historical survey with Dehornoy, for it is his work
that was formalized, but see the last section for future ideas!
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3 Defining Braids

We open with a brief description of the main mathematical structures at play. Presented groups have
already been implemented in Lean, so we merely summarize the mathematics. A reader comfortable
with the basics of presented groups is encouraged to skip to section 3.2. I implemented presented
monoids, so a more detailed treatment is given, along with an overview of the Lean implementation.

3.1 Presented Groups
We have seen that braids form a group, so it is no surprise that we begin here.

Definition 3.1 (Group). A group is a set with an associative binary operation, an identity element,
and an inverse for every element.

We can be more specific here, in light of our notion of braid codes. These are strings of symbols
(and their formal inverses)

Definition 3.2 (S-strings). Given a set S, we define S
→ to be the set of all S ↗ strings " that

is, ordered lists of elements from S. Note that S
→ contains the empty string, ε. An S-string s is a

factor of an S-string t if s appears within t; that is, if t = xsy for some (potentially empty) S-strings
x and y

Now, for any element s ↑ S, we will denote its formal inverse as s. The set containing the formal
inverses of every element of S will be denoted S. Strings over S and S form a group, called the free
group on S.15

Definition 3.3 (Free Group). The free group over a set S, denoted FS , is the set (S ↔S)→ with the
binary concatenation operator, and the empty string as the identity.

Thus, we now have groups whose elements are strings. There is more to the braid group, however
: it is often possible to code isotopically equivalent braids by di#erent codes. For example, ω1ω2ω1

is equivalent to ω2ω1ω1. We want to make a structure which groups together codes representing the
same braid. This is called a “quotient group” or a “presented group”. We begin by defining the idea
of “grouping together.”

Definition 3.4 (Equivalence Relation). A binary relation R on a set A is an equivalence relation if
it is reflexive, symmetric, and transitive.

Definition 3.5 (Equivalence Class). The equivalence class of an element a ↑ A under an equivalence
relation R is the set of all b ↑ A such that aR b. We denote this !a"R. When it is clear from context,
we may omit the subscript and write !a".

We aim to define a new group G/R whose elements are equivalence classes under R. What should
the operation be? It would be nice to define !a"R ·Q(G,R) !b"R := !a ·G b"R. We must make sure this is
well-defined: if !a"R = !a↓"R and !b"R = !b↓"R, then somehow we must ensure !a ·G b"R = !a↓ ·G b

↓"R
Not every equivalence relation will su!ce to make G/R a group! We must give a stronger relation:

Definition 3.6 (Congruence). A congruence is an equivalence relation on a group compatible with
the group’s operation ( · ) : that is, if C is a congruence and xC y and z C w, then x · z C y · w

Now, we have the idea of a quotient group.
15We call this group “free” because we are free to define a homomorphism h from the free group to any other group

G, without restriction. We will see shortly that this is not the case for all groups!
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Definition 3.7. Given a group G and a congruence C on G, the quotient group G/C is the set
{!g"C | g ↑ G}, equipped with the binary operation ·, defined as !a"C · !b"C := !a ·G b"C with !1G"C
as the identity element, and (!a"C)↑1 := !a↑1"C .

We now move on to giving the shortest possible description of a quotient group. We specify the
underlying group G more economically by writing it using generators :

Definition 3.8 (Generators). We say a group G is generated by a set S ⇑ G if every element of G
may be written as product of elements of S and their inverses. We then say S is the set of generators
of G.

Remark. A free group over a set S is generated by S

We may also simplify how we define the congruence C. Given a binary relation R on (S↔S)→, we
may take the reflexive, symmetric, transitive, and multiplicative closure of R to form a congruence
CR :

• reflexivity : For all a ↑ (S ↔ S)→, aCR a

• closure : If aR b then aCR b

• symmetry : If aCR b then bCR a

• transitivity : If aCR b and aCR c then aCR c

• multiplicativity : If aCR b and cCR d then acCR bd

Thus, we may define a presented group by giving the set of generators S and a relation R.

Definition 3.9 (Presented Group). We define the presented group on a set S and relation R as
⇓S,R⇔ = FS/CR.

With all this in place, we are ready to give Artin’s definition of the braid group!

3.2 The Braid Group
For simplicity, we begin with the braid group on infinitely many strands, so we need not keep track of
the specific number of strands. We will return at the end of the section to discuss the case of finitely
many strands. Note : after defending this thesis, but before submitting to the library database, I
re-implemented braid groups as a special case of Artin-Tits groups. This section is thus not current;
I refer the interested reader to a talk I recently gave.

We begin with the set of generators S = {ωi | i ↑ N}. We define the index of ωi to be i. The set
of braid group words is BW := (S ↔ S)→.
The relation on braid groups with infinitely many strands, Rb, is

For all i, j ↑ N, if |i↗ j| = 1, then Rb(ωiωjωi, ωjωiωj) (the braid relation)
For all i, j ↑ N, if |i↗ j| ↘ 2, then Rb(ωiωj , ωjωi) (the commutative relation)

The PresentedGroup structure is already in Mathlib, so the Lean definition of the braid group
is almost entirely straightforward.16 We use the natural numbers17 to encode the generators, since
all the ωi are indexed by a distinct natural number.

16We give the relation in a slightly di!erent format : if we have xCRb
y, that means !x"CRb

= !y"CRb
. Since we

are in a group, !x"CRb
· (!y"CRb

)→1 = 1. Thus, !xy→1"CRb
= 1. So, we can just keep track of the free group element

xy→1. We can thus give the relation CRb
as a set of free group elements

17Following the Lean definition, here the natural numbers are understood to begin from zero. This leads to an
o!-by-one situation in terms of generator numbering as compared to Artin and Dehornoy
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There is a small subtlety here: PresentedGroup generates a congruence on Rb, and then
quotients by said congruence. Recall this is done by taking the reflexive, symmetric, transitive,
and multiplicative closure of the original relations.

The braid relations are already symmetric, for they are defined on the absolute distance of the
index of the relevant generators.18

So, for the formalization we simplify the relations to Rs, defined inductively as follows:
For all i ↑ N, Rs(ωiωi+1ωi, ωi+1ωiωi+1)
For all i, j ↑ N, if i+ 2 → j, Rs(ωiωj , ωjωi)

This restricted definition of the relations will reduce the numbers of cases needed in proofs about
braid groups. So, we define our relations braid_rels_inf as Rs. In the rest of this write-up, we
will write a ↖ b to mean aCRS b.

Thus, the Lean definition looks like so:
def braid_rels_inf : Set (FreeGroup N) :=

{ r | ↙ i : N , r = .of i → (.of (i + 1)) → .of i → (.of (i + 1))↑1 → (.of i)↑1

→ (.of (i + 1))↑1} ↔
{ r | ↙ i j : N, i + 2 → j ∝ r = .of i → .of j → (.of i)↑1 → (.of j)↑1}

def braid_group_inf := PresentedGroup braid_rels_inf

With the addition of a small API,19 the braid group is thus defined in Lean!

3.3 Presented Monoids
Given that the braid relations themselves contain no inverses, a natural question arises : can we
consider a structure with the same generators but NOT their inverses, under the braid relations?
The answer is yes.

Definition 3.10 (Monoid). A monoid is a structure with an associative binary relation and an
identity element.

Similar to how we defined free groups and presented groups, we may also define free monoids
and presented monoids. The task is easier : we need not worry about inverses.

Definition 3.11 (Free Monoid). The free monoid over a set S is the set S
→ equipped with the

binary concatenation operator and the empty string as the identity.

Congruences hold just the same for monoids as they do for groups; 20 one merely replaces the
word “group” with “monoid” in the definition. Thus, we may define quotient monoids.

18For example, if we know for some i and j that Rb(ωiωjωi, ωjωiωj), then we must have Rb(ωjωiωj , ωiωjωi). Why?
Well, since Rb(ωiωjωi, ωjωiωj), |i ↑ j| = 1 (the braid relation is the only one which holds on elements of length 3).
Thus, |j ↑ i| = 1 as well, so Rb(ωjωiωj , ωiωjωi) as desired. This holds in a similar manner for the commutative part
of the relation.

19Note that the congruence generated on Rs is on free group elements. We give basic facts about equality within
the braid group. This includes facts like !ωi+1ωiωi+1"CRS

= !ωiωi+1ωi"CRS
.

We also define the universal property for braid groups (merely a specialization of that for presented groups).
20The form given in the previous section is not exactly the form needed for future proofs, so we prove an equivalent

definition:

• For all a, aC a (reflexivity)
• If aC b and bC c then aC c (transitivity)
• If aC b then for all c and d, cadC cbd (one-step reduction)
• If aC b then for all c and d, cbdC cad (symmetric one-step reduction)

There are many equivalent formulations; we will eventually give about four. All will be needed for various induction
proofs.
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Definition 3.12. Given a monoid M and a congruence C on M , the quotient monoid M/
+
C is the

set {!g"C | g ↑ M}, equipped with the binary operation ·, defined as !a"C · !b"C := !a ·M b"C and
!1M "C as the identity element.

Again, we may consider a monoid generated by a set S :

Definition 3.13 (Generators). We say a monoid M is generated by a set S ⇑ M if every element
of M may be written as product of elements of S. We then say S is the set of generators of M .

Remark. A free monoid over a set S is generated by S

And so all the ingredients are here : we may define a presented monoid.

Definition 3.14 (Presented Monoid). We let ⇓S,R⇔+ denote the presented monoid on a set S and
relation R - it is the quotient monoid of the monoid generated by S under CR

With the mathematical theory described, on we go to the Lean formalization!
Presented monoids were not in Mathlib; currently, about half of my work has made it in. Luckily,

there is already a definition of congruences in Lean, so we may build upon that structure.
First, we must give a formal definition of S-strings. It could be a list, a free monoid, a

string, etc. However, Congruence must be applied to a type endowed with a Mul structure.
Although a multiplication operation could be easily defined for lists and strings (appending for
lists; concatenation for strings), FreeMonoid is the only type in Mathlib that has a Mul structure.
So, we represent the ϑ-strings by FreeMonoid instead of List.

With that decision made, we must simply quotient by said Congruence relation, and our pre-
sented monoid will be defined!

Let us briefly note that presented monoids are also often called abstract re-writing systems, string
re-writing systems, or Thue systems. This is because they model the idea of re-writing parts of the
string according to given rules.

Definition 3.15 (R-derivation). Given a set S and a relation R on S
→, a R-derivation is a finite

list of strings R0, R1, ..., Rn such that for every k, 0 → k < n, Rk = axb, Rk+1 = ayb, and xR y.

R-derivations are simply another way to view a presented monoid.

Theorem 3.1. There exists an R-derivation linking R0 to Rn if and only if they are equivalent in
the corresponding presented monoid : !R0"CR = !Rn"CR

So, a presented monoid is a re-writing system just under another name. We thus give a robust
API for a user looking to prove two words are equivalent in a presented monoid. For example, we
prove the following amongst many others:

• If aCR b then for all c, caCR cb

• If aR b and cCR d then acCR bd

• If aCR b and cR d then acCR bd

• If aR b then for all c, acCR bc

The benefit here is that we keep the definition simple, so that proofs about presented monoids have
minimal cases. But the user also has access to a veritable library of lemmas to speed up proofs
about the words themselves.
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3.4 The “Braid” Monoid
Let us consider a monoid in which the braid relations hold. Note that at this point, we have alluded
to a proof that the braid group aligns with the topological definition of braids. Although it is
tempting to think of a monoid in which the braid relations hold as a “braid monoid” (perhaps braids
with only overcrossings), until we can connect such a monoid to the braid group mathematically
(perhaps via a map), we have no geometric interpretation of the monoid. It is, for the moment, just
an arbitrarily defined mathematical structure with no connection to the braid group.

We begin with the set of generators S = {ωi | i ↑ N}. We define the set of braid monoid words
to be BW := S

→.With the PresentedMonoid structure set up, we may apply it to our relations.
Again, Rs is defined inductively as follows:

For all i ↑ N, Rs(ωiωi+1ωi, ωi+1ωiωi+1)
For all i, j ↑ N, if i+ 2 → j, Rs(ωiωj , ωjωi)

This procedure is straightforward, and similar to how we used the PresentedGroup structure.
We are able to define a number of functions on the braid monoid. Since the relations leave the

length unchanged, length is well-defined on the braid monoid. Note that this is not true in general
for any presented monoid : we could very well have a relation that says, say, aaRa for some a. It
is not true in the braid group: !ωiωi" = !ε".

We may also define the set of generators in a braid monoid element " again, the braid relations
leave this unchanged. In fact we may even reverse a braid monoid element. In order to calculate the
length, the set of generators, or the reversed braid element, we perform the relevant operation on a
representative of the equivalence class " a free monoid element. So, the length of !a" is defined as
the length of a.

We will thus need to somehow define length, set of symbols in, and reversing for free monoid
elements. Let us return for a moment to the choice made earlier about the type for S-strings. We
were forced to select free monoids over lists. This is a bit of a hassle now : List is much richer than
FreeMonoid. List already has functions length, toFinset, reverse, etc.

Although it is simple to implement these for FreeMonoid, we must tread carefully. While free
monoids are in fact defined as lists in Lean, they are meant to perform di#erent roles. Free monoids
generally bend more to mathematical theorems in abstract algebra, whereas lists are more used
for computation. Even when the two share similarly-minded functionality, it is from a di#erent
viewpoint and with di#erent implementation details. For example, if the idea is to apply a function
to every element of our string and then combine them, we have FreeMonoid.lift but List.foldr.
It is a balancing act to keep the two structures distinct, but also usable. Each has lemmas the other
lacks.

We have decided to add definitions and lemmas to FreeMonoid if they will be able to be defined
on the eventual presented monoid, the braid monoid. Such definitions seem reasonably “algebraic”
since they can be defined for even more complex algebraic structures. Thus, we add in

length : The length of a FreeMonoid element
reverse : reverses a FreeMonoid element - abcd becomes dcba
symbols : The set of symbols appearing in a FreeMonoid element

because these play nicely with the braid monoid structure.
We take a di#erent approach for List definitions that do not remain invariant in the braid

structure, such as getLast (this returns the last element in a list). Equivalent braids need not have
the same last generator - ω1ω3 and ω3ω1 certainly do not! In this case, we have decided to use
FreeMonoid.toList when needed.

This is a bit cumbersome, but thankfully quite rare for this project.
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3.5 Finite Braid Groups and Finite Braid Monoids
Above, we have discussed only braid groups and braid monoids on infinitely many strands and the
equivalence on them, ↖. We may also consider braids on n strands. A braid on n strands has n↗ 1
generators, but that makes no sense for n = 0. Instead we phrase it as: a braid on n+1 strands has
n generators. Those generators are numbered ω0,ω1, ...ωn↑1 (this is a di#erence from the overview
in the Introduction, but is necessary because Lean starts natural numbers at 0). Note that if n = 1,
then there are no generators.

We let the set of generators for a finite braid group or monoid on n+1 strands to be Sn = {ωi|i ↑
[n]}. (Here, [n] = {m ↑ N,m < n}. Then the set of finite-braid group words is BWn := (S ↔ S)→

and the set of finite-braid monoid words is BW
+
n := S

→.
The relation on braid groups with n+ 1 strands, Rbn+1, is defined inductively as

For all i, j ↑ [n], if |i↗ j| = 1, then Rb(ωiωjωi, ωjωiωj) (the braid relation)
For all i, j ↑ [n], if |i↗ j| ↘ 2, then Rb(ωiωj , ωjωi) (the commutative relation)

Once again, we will simplify the relations to avoid doubling-up on symmetry. The equivalence
on braids with n + 1 strands will be given by the congruence on the simplified Rbn+1 , and will be
denoted ↖n. Note that ↖n is the restriction of ↖, simply tossing out relations involving generators
with index n or higher. We denote the braid group on n+ 1 strings as Bn+1; the monoid as B

+
n+1.

Infinite braid groups/monoids are simple in Lean - the generators are kept track of via their
index, of type N. For finite groups, the induces of the generators are a finite set of consecutive
natural numbers. We thus use the Fin type. It is a bundled type: an object of type Fin n contains
a natural number k and a proof that k < n. Notably, 5 : Fin 7 and 5 : Fin 8 are di#erent
elements. Addition on Fin is delicate: we have the potential for overflow errors. There are two
options: keep track of the hypotheses, so that when we add, say, 3 : Fin 10 and 5 : Fin 10, we
must provide a proof that 3+5 < 10 (addition is here on 3 and 5 as natural numbers). Alternatively,
there is a successor function which maps a : Fin n to (a+1) : Fin (n+1). Here, we needn’t juggle
hypotheses, but this comes at a cost of changing the upper bound. We can also change the upper
bound without changing the number itself : this is Fin.castSucc. So, Fin.castSucc (5 : Fin
7) = (5 : Fin 8).

We use the latter approach, with Fin.succ and Fin.castSucc. Although a bit finicky to set up,
we needn’t bother with hypotheses floating around. Moreover, we will be able to define our relations
with just two applications of either Fin.succ or Fin.castSucc. The reader may wish to skip the
following few paragraphs detailing the implementation of the braid relations for the finite case. It
gives a sense of the precision required when defining objects in Lean, and is a fun puzzle, but is not
necessary to follow the rest of the discussion.

3.5.1 Implementation

We will describe in detail the implementation21 of the finite braid groups. The case for the monoid
is analogous. To make the definition cleaner, we first break it into smaller pieces. We define the
braid relation for inputs i and j as

def braid_rel {S : Type _} (i j : S) : FreeGroup S :=
i → j → i → (′j)↑1 → (′i)↑1 → (′j)↑1

- of course making sure we only input adjacent i and j later on!
Similarly, for the commutative relation is

def comm_rel {S : Type _} (i j : S) : FreeGroup S :=
i → j → (′i)↑1 → (′j)↑1

21Again, I have re-implemented this in a more elegant fashion; the definition given here is no longer current
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To recap: we want the generators of the braid group on n + 1 strands to have type Fin n. We
define the relations as such:

def braid_rels : (n : N) ≃ Set (FreeGroup (Fin n))
| 0 => ∞
| 1 => ∞
| n + 2 =>

{ r | ↙ i : Fin (n + 1), r = braid_rel (i.castSucc) (i.succ) } ↔
{ r | ↙ i j : Fin n, i → j ∝ r = comm_rel (i.castSucc.castSucc)
(j.succ.succ) }

What’s going on with this n+2 case? First o#, any natural number not equal to 0 or 1 is of the
form n+2 for some natural number n. Let’s take the braid relation case: we want the braid relation
to hold for any i and i + 1. Well, we need both i and i + 1 to have type Fin (n+2). So we need
i.succ to have type Fin(n+2), meaning i must have type Fin(n+1) to begin with. In the end, we
need both i and i.succ to have type Fin(n+2), so we will cast i to Fin(n+2) using Fin.castSucc.

The commutative case adds a twist. Let’s go through the reasoning step-by-step. We need an
end result where both i and j are of type Fin(n+2), and i is at least 2 less than j (meaning, if we
start with i → j, we need to bump up j twice to guarantee the needed distance). So, we make a
hypothesis that i → j, and use Fin.succ twice on j. So j should start o# as Fin n. For future
use, it is simpler to keep i and j as the same initial type, so we let i also have type Fin n and use
Fin.castSucc twice. To be clear, we do not only consider pairs i, j that are exactly two apart. We
begin with some i and j such that i → j, and then widen the existing gap by 2.

Whew!

3.5.2 Finite Relation as a Restriction

Now, there are clear similarities between the finite and infinite braid groups (and respective monoids).
When we prove properties about one, it would be nice to have some kind of “converter” to port them
to the other group/monoid.

It seems just from the definitions that the infinite case will be easier to do the bulk of the work
in. But will that hold when proving properties about the braid groups/monoids?

Let’s consider another fact about Fin n : subtraction is truncated, so 5-7=0. One must be
precise: a ↗ b = c ↗ b only implies a = c when b → a (or equivalently, b → c). This makes many
arithmetic proofs long. In the case of the braid relations, where one often must prove something
of the form i + 2 → j, this complicates things enormously. Thus, we work within the finite braid
monoid as minimally as we can get away with.

So, how to port over the results? Copy-pasting is long, and we would still need to check all the
hypotheses needed for Fin n.

Luckily, the relation on finite braids is a restriction on that for infinite braids : if a ↖n b, then
a ↖k b for all k > n, and also a ↖ b. The is a small hiccup here : when we say a ↖n b this means
a, b ↑ Bn, but when we say a ↖k b this means a, b ↑ Bk. Luckily, it is quick to see that we have
B0 ∈ B1 ∈ B2... ∈ B↗, and so this poses little trouble to the paper-and-pencil mathematician. In
Lean, we must typecast from Fin n to Fin k or N, but this is a quick task. In the other direction, if
we have a theorem for infinite braid monoids, we must cast the infinite braid monoid element “down"
to a finite braid monoid element. Thus can be done so long as the infinite braid monoid element is
appropriately bounded. Thus, we have

def make_fin (n : N) (a : FreeMonoid N) (bound : ∋ x ↑ a, x<n) : FreeMonoid (Fin
n) :=

(FreeMonoid.pmap (ω i => Fin.mk i ) a) bound
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The use of pmap instead of map protects us from dependent type theory issues. And when two
bounded infinite braid monoids are equivalent under ↖, they are also equivalent under the finite
braid relation for any appropriate number of strands.

theorem braid_rel_inf_to_fin (n: N) (a b: FreeMonoid N) (holds_in_inf :
braid_rels_m_inf a b)
(bounded_a: ∋ (x : N), x ↑ a ≃ x < n.pred) (bounded_b: ∋ (x : N), x ↑ b ≃
x < n.pred) :
braid_rels_m n.pred (make_fin n a bounded_a) (make_fin n b bounded_b)

We will thus prove all main results for the infinite case, and then port it down to the finite case.
This procedure will be discussed along with each result.
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4 Localizing Braids

At last it is time to drop the scare quotes around “braid” monoids! We will elucidate the connection
between them and braid groups, and show an embedding (an injective homomorphism from the
braid monoid into the braid group).

4.1 Ore Localization
We must somehow connect the braid monoid to the braid group. The intuitive idea is to somehow
add in inverses to the braid monoid and obtain a structure isomorphic to the braid group.

The idea of adding in inverses, or “denominators”, is common in mathematics. We obtain the
rational numbers by adding in non-zero natural-number “denominators” to the integers. This process
is called localization. The common procedure of localizing the integers by the non-zero natural
numbers creates a group (N\{0})↑1Z) 22 whose elements are fractions of the form p

q where p ↑ Z
and q ↑ Z{0}. The group operation is fraction multiplication,

a

b
△ c

d
=

a ·Z c

b ·Z d

But note that ordinary fraction multiplication uses commutativity. Alas, concatenation of braids
is not commutative in the monoid (nor the group): One may see that ω1ω2 does not equal ω2ω1

through properties of braid relations (no relations match ω1ω2). Or visually, these two braids are
distinct:

and

So, we use a clever trick! First let’s define two algebraic properties: common multiples and
cancellativity. Together, they are called the “Ore Conditions.”

Definition 4.1 (Common Multiples). A monoid M with right common multiples satisfies the
property that for all a and b in M , there exist c and d in M such that ac = bd. Left common
multiples are defined similarly.

Definition 4.2 (Cancellativity). A cancellative monoid has the property that for all monoid ele-
ments a, b, c, if a · c = b · c then a = b, and if c · a = c · b, then a = b.

The big idea is that we may localize a non-commutative monoid if it has those two properties
" right common multiples and cancellativity. In fact it doesn’t matter if the common multiples are
left or right; the braid monoid happens to have both. Without loss of generality, we will below use
right common multiples. O# we go!

We begin with a monoid M and a cancellative submonoid with right common multiples S ⇑ M .
We consider all pairs of the form (m, s) with m ↑ M and s ↑ S. We give the following equivalence
relation on pairs:

Definition 4.3 (▽). We say (m1, s1) ▽ (m2, s2) i# m1a = m2b, where a and b are such that
s1a = s2b.

22Usually, we give this construction a ring structure, since we also have an addition operation on Z. Since the braid
group only has one operation, we only discuss multiplication here
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Theorem 4.1. ▽ is well-defined; that is, if we have a, a
↓
, b, b

↓ ↑ S such that s1a = s2b and s1a
↓ =

s2b
↓, m1a = m2b if an only if m1a

↓ = m2b
↓. This means that the definition of ▽ is independent of

the choice of common multiples.

Theorem 4.2. ▽ is an equivalence relations on pairs (m, s).

We omit the proofs of the above two theorems; they follow from the definition of ▽.
Now, we consider equivalence classes of pairs under ▽. These equivalence classes will be the

elements of the group we aim to construct.

Definition 4.4 (S↑1
R). Given a monoid R and a submonoid of R satisfying the Ore conditions S,

we define the monoid S
↑1

R as the set {!(r, s)"↘ | r ↑ R, s ↑ S} with 1S
1S

as the identity and a binary
operation defined as follows: a

b · c
d = ae

df where e and f are any elements of S such that be = cf .23

Once again, we must verify that this definition is independent of the choice of common multiples
e and f , and once again, we omit the proof here. Similarly, we must prove associativity.

Henceforth, we will write r
s for !(r, s)"↘. We may obtain an injective homomorphism h from R

into S
↑1

R by sending r ↑ R to r
1 .

• Injectivity : Assume h(r1) = h(r2); that is, r11 = r2
1 . Then (r1, 1) ▽ (r2, 1). Since 1 · 1 = 1 · 1,

we must have r1 · 1 = r2 · 1 (from the definition of ▽). Hence r1 = r2 as desired.

• Homomorphism : h(r1 · r2) = r1r2
1 . We must now calculate h(r1)h(r2) =

r1
1 · r2

1 . In this case,
a = r1, b = 1, c = r2, d = 1. Then since 1 · r2 = r2 · 1, we may let e = r2 and f = 1. Hence
r1
1 · r2

1 = r1·r2
1·1 . Thus, h(r1r2) = h(r1)h(r2).

Thus, we are able to obtain an embedding of R intro S
↑1

R.
We are lucky that the Ore Localization was already formalized in Lean by Jakob von Raumer

for rings; the vast majority of the preliminaries can be used for monoids. A little work remains to
specialize it to our particular use case of presented monoids.

4.2 Ore Localization of a Presented Monoid
In our case, we are localizing not by just any submonoid, but in fact by the entire monoid.

Theorem 4.3. For any monoid M satisfying the Ore conditions, M↑1
M has a group structure.

Proof. We already have shown that M
↑1

M has a monoid structure. Thus, all that remains is to
define inverses. We will say that for any a

b ↑ M
↑1

M, (ab )
↑1 = b

a . This is possible to do since both
a and b must be in M , so a is allowed to serve as a denominator. We shall omit the proof that b

a
satisfies the properties of an inverse as this is straightforward.

Now, let us consider an even more specific case: when the monoid M is a presented monoid. Let
M = !S,R"+. I claim that (⇓S,R⇔+)↑1⇓S,R⇔+ is isomorphic to the presented group on those same
generators and relations, ⇓S,R⇔. We show this by a careful inspection of the universal properties of
(⇓S,R⇔+)↑1⇓S,R⇔+ and ⇓S,R⇔.

23to motivate this definition, one might consider the following chain of reasoning :
a
b · c

d will map to a · b→1 · c · d→1 in the eventual group we construct. Then we let e and f be such that be = cf . Thus,
e = b→1cf , so ef→1 = b→1c Then

ab→1cd→1 = aef→1d→1 (1)

= (ae)(df)→1 (2)

which is an element of the fraction group!
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Definition 4.5 (Lift). Given a map f from a set S to a monoid M , we may lift f to a function
from the free group on S to M - this we will denote fL.

Definition 4.6 (Universal Property of a presented group). Given a presented group ⇓S,R⇔, for any
other group G, any map f from S to G, if for all r ↑ R, fL(r) = 1G, then there exists a unique
homomorphism f

→ from ⇓S,R⇔ to G.

Remark. The identity map on ⇓S,R⇔ is a group homomorphism, so there is only one homomorphism
from ⇓S,R⇔ to ⇓S,R⇔.

Definition 4.7 (Universal Property of the Ore Localization of a Presented Monoid). Given a
localization of a presented monoid group (⇓S,R⇔+)↑1⇓S,R⇔+, for any other group G, any map f

from S to G, if for all (r1, r2) ↑ R, fL(r1) = fL(r2), then there exists a unique homomorphism f
→

from ⇓S,R⇔ to G.

Remark. The identity map on (⇓S,R⇔+)↑1⇓S,R⇔+ is a group homomorphism, so there is only one
homomorphism from (⇓S,R⇔+)↑1⇓S,R⇔+ to (⇓S,R⇔+)↑1⇓S,R⇔+.

We use the simplified notation PML(S,R) for (⇓S,R⇔+)↑1⇓S,R⇔+ " PML being “presented
monoid localization”. Our first task will be to define two homomorphisms:

h1 : homomorphism from ⇓S,R⇔ to PML(S,R). Here, we use the universal property for presented
groups to lift the function s ̸≃ s

1 .
h2 : homomorphism from PML(S,R) to ⇓S,R⇔. Here we use the universal property for Ore

localizations of presented monoids to lift the function s ̸≃ !s"CR .
Note that if we compose h1 with h2, we get a homomorphism from ⇓S,R⇔ to ⇓S,R⇔ – but that must

be the identity! Similarly, composing h2 with h1 gives the identity. Thus, h1 is a bijection (and h2

is as well). Thus, we have an isomorphism between PML(S,R) and ⇓S,R⇔. Hence, the localization
of a presented monoid is isomorphic to the presented group on those sam generators/relations.

Thus, every element of the braid group can be written in the form ϖ(a)(ϖ(b))↑1 for a, b in the
braid monoid.

And, since we can embed the braid monoid (no scare quotes now!) into the braid group, we know
that means any braid is equivalent to one in which all the overcrossings appear first, followed by the
undercrossings.

The Lean implementation gets o# to a rocky start : we want to plug in a presented monoid satis-
fying the Ore conditions to the existing Ore localization API. However, both the PresentedMonoid
and OreMonoid instances carry with them a .toMonoid function. If we try to give Lean a type M
with instances [PresentedMonoid M] [OreMonoid M], Lean can infer the Monoid instance on M in
two di#erent ways. This is referred to as a “bad diamond”.

Monoid

PresentedMonoid OreMonoid

M

To avoid this, we define mixins : Prop-valued typeclasses (Prop-valued means the typeclass carries
no data). Lean already has a mixin IsCancelMul, which carries the properties of cancellation :
a △ b = a △ c =⇒ b = c and b △ a = c △ a =⇒ b = c. So, we need only define a mixin for common
multiples, and then bind it together with IsCancelMul to get an Ore mixin.

We thus define isCommonMul on a structure M with multiplication carrying the property that
for all a, b ↑ M , there exist c, d ↑ M such that ac = bd.
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Unfortunately, this definition is non-constructive. The Ore localization in Mathlib is constructive,
as is our upcoming proof that the braid monoid has common multiples. In the future, I hope to
update the code so that it can be constructive through-and-through. This is not needed for the
proof of correctness and termination of our braid word problem algorithm. However, it would be
nice to visualize the magic of the isomorphism between the braid group and the localization of the
braid monoid. It’s pretty cool that any braid is equivalent to one in this special overcrossings-before-
undercrossings form. I would like Lean to be able to output that form for any braid (more to come
on this in the “Future Work” section at the end of this document).

Nevertheless, the definition works for the current project. Moving onwards, we are lucky that
the universal property for the presented group is already formalized. The universal property of the
Ore localization of a presented monoid by itself is merely a specialization of that for general Ore
localizations.

Now, we have an injective homomorphism from the localization of a presented monoid into a pre-
sented group (over the same relations, converted appropriately). We shall show below that the braid
monoid satisfies the conditions for Ore localization, and thus we have an injective homomorphism
from said localization into the braid group.

4.3 Common Multiples
We now prove the existence of right common multiples " that is, for any braid monoid elements a

and b, we show that there exist braid monoid elements c and d such that a · c ↖+
b · d. Currently,

this is not implemented constructively, because it feeds into the hasCommonMul mixin defined above,
which is not constructive.

We could equally well give a function which returns the common multiples of any two braid
monoid elements. We’d then prove that this function’s outputs work as expected. This may be done
in the future " it would be nice to display an image of the common multiples in the infoview of
Lean for the user.

Once again, we note that since we are still working on an embedding of B+
n into Bn, any mention

of strands or imagery is entirely for the reader’s intuition. It is not allowed to play any role in the
proof.

4.3.1 Infinitely Many Strands

We begin by defining more braid structures.
The first is the ω braid, representing one strand moving across a number of other consecutive

strands. We define24

ωi,i to be the empty word
If i < j then ωi,j = ωi · ωi+1,j

Else, j < i and ωi,j = ωi↑1 · ω(i↑1),j

24The Lean definition of this and the following braid structures can be found in the appendix.
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Thus, we have ω3,6 = ω3 · ω4 · ω5, which we will later see looks like the third string moving over into
the place of the sixth:

Further, we have ω6,3 = ω5 ·ω4 ·ω3 which looks like the sixth string moving over into the place of the
third (note that since we are in the monoid, it must pass under the other strings, as only positive
generators are allowed):

Now we begin to accumulate results about how to move a single generator across a ω section:
For j ↘ i+ 2 and i < k < j, we have ωkωi,j ↖+

ωi,jωk+1.
Let’s look at an example: ω3ω1,5 ↖+

ω1,5ω4.

should be equivalent to
This seems eminently reasonable! The original proof was by induction on the distance between

i and j - but we note that since i < j here, we may instead induct on j ↗ i. We write a custom
induction principle 25 for inducting on the di#erence of two numbers, knowing that they are at least
2 apart.

25This work has prompted the creation of a number of additional induction principles in Lean. For example, we
have added a principle which inducts on the absolute di!erence between two numbers. We have given another which
performs regular (weak) mathematical induction on a variable which we happen to know is bound between two others.
These provide a clean API and reduce the hypothesis-wrangling left to the user.
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That is, if we have a property p which takes in 2 integers, and we want to show that p holds of
some integers i, j where j ↘ i+ 2, our induction will look like

Base Case : For any two integers i
↓
, j

↓, if j↓ ↗ i
↓ = 2, then p holds of i↓ and j

↓.
Inductive Step : We consider natural numbers j

↓ and i
↓ such that j

↓ ↗ i
↓ ↘ 3.

Inductive hypothesis : We assume that for all i↓↓ and j
↓↓ with 2 → j

↓↓ ↗ i
↓↓
< j

↓ ↗ i
↓, p holds of i↓↓

and j
↓↓. Wait aim to show that p holds of i↓ and j

↓.
We note another completely analogous result, proved in almost the same manner, that for j ↘ i+2

and i < k < j, we have ωk↑1ωj,i ↖+
ωj,iωk.

Now we move on to even more complicated braids - a half twist! A half twist on n strands is
denoted !n, and is built up of sigma braids. It is defined inductively as so,

!0 is the empty word
If n ↘ 1 then !n = ω0,n!n↑1

Thus, !n = ω1ω2ω3ω4ω1ω2ω3ω1ω2ω1
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Geometrically, we could also perform a half-twist on the first n ↗ 1 strands, and then pull the
last, nth, string all the way back. It might look something like this:

We hence surmise that

Theorem 4.4. For every n > 0, !n ↖+ !n↑1ωn,0.

Proof. We proceed by induction.
Base Case : n = 1. Then

!1 = ω0

= ω1,0

= ε · ω1,0

= !0ω1,0
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Inductive step: We consider the n+ 1 case

!n+1 = ω0,n+1!n (by def of !)
= ω0,nωn!n

↖+
ω0,nωn!n↑1ωn,1 (by inductive hypothesis - now every symbol occurring in !n↑1

is far enough away from ωn that commutativity applies!)
↖+

ω0,n!n↑1ωnωn,1 (by repeated applications of the commutativity relation)
↖+ !nωnωn,1 (by def of !)
↖+ !nωn+1,1 (by def of ω)

as desired

We have shown that we may replace !n by an expression involving !n↑1; this will prove quite
handy for proofs by induction.

Remember that we were able to move a single generator “through” a ω braid. We next wonder
what happens when we try to pull a single crossing through a delta braid. Can we move the crossing
here below the twist? In fact, we can!

Theorem 4.5. For any natural numbers n and i with i < n, ωi!n ↖+ !nωn↑i

Proof. We would proceed by induction on n, and then casework on i, and use Theorem 3.4 as proved
above.

With the ! structure now defined, and a few lemmas proved about it, we are ready to attack the
common-multiple problem. Remember, we will be looking for c and d such that ac ↖+

bd. Instead
of focusing on c and d themselves, we will instead focus on the entirety of ac (or equivalently, bd).
The claim is that for any a, we can find an appropriate c such that ac will be equivalent to some !
braid. We will begin by working with single generators, before moving to entire words.

Theorem 4.6. For any natural numbers n and i such that i < n, there exists ϱn(i) ↑ B
+ such that

ωiϱn(i) ↖+ !n

Proof. We proceed by induction on n. If n = 0, the result holds vacuously.
Base Case : n = 1. Then since i < n, i = 0.

!n = ω0,1

= ω0

= ω0 · ε

Hence ϱn(i) = ε.
Induction Step : We consider the case for n+1. We know that i < n+1. We split into cases

based on the value of i in relation to n.
Case 1: i < n.

!n+1 ↖+ !nωn,1

↖+
ωiw(n↗ 1, i)ωn,1 (by inductive hypothesis for n and i)

Hence ϱn+1(i) = ϱn↑1(i)ωn,1 when i < n.
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Case 2: i = n To build the word, we will need the shift function s : s(ωi) = ωi+1. We may apply s to a
word by applying it to each of the word’s letters. For example, for 0 → i → n↗1, ωiωn,0 ↖+

ωn,0s(ωi)
as proved above. Since !n contains only the letters ωi for 0 → i → n ↗ 1, by repeated applications
of 4.5, !nωn,1 ↖+

ωn,1s(!n)

!n+1 ↖+ !nωn+1,1

↖+
ωn+1,1s(!n+1) (by above statement)

= ωnωn,1s(!n+1) (by definition of ω)

Hence ϱn+1(n) = ωn,1s(!n+1)

By the above theorem, any two generators have a a delta braid as a common multiple. Let’s now
go for entire words!

Theorem 4.7. For a word a of length at most l, in which the index of the largest generator is i

there exists a word pl(a) such that aϱl(a) ↖+ (!i)
l

Proof. The full proof is only sketched here; it is done by induction on l. We note that it is not
su!cient to merely concatenate the ϱn(i) for each generator, because of the lack of commutativity.
If we look closely,

ωa1ωa2 ...ωal→1ωalϱi(al)ϱi(al↑1)...ϱi(a1)

will not work out. We may replace ωalϱi(al) by !i in the middle, obtaining

ωa1ωa2 ...ωal→1!iϱi(al↑1)...ϱi(a1)

But then ωal→1 is not directly next to ϱi(al↑1).
To fix this, we will need the flip function fn : fn(ωi) = ωn↑i (where i → n). We may apply fn to

a word by applying it to each of the word’s letters, so long as the word is bounded by n. Thus, we
know that !ifi(ϱi(al↑1)) ↖+

ϱi(al↑1)!i.
So, we will set

pl(a) = pl(ωa1ωa2 ...ωal→1ωal) = ϱi(al) fi(ϱi(al↑1)) ϱi(al↑2) fi(ϱi(al↑3))...

Above, the ... does not continue infinitely, but whether or not we apply fi to a1 depends on the
parity of l, so it is easier to let the reader infer the pattern than to write out casework.

Then, if we have two words a, b and we let l be the maximum of the respective lengths of a and
b, the above theorem will give us the common multiples.

4.3.2 Finitely Many Strands

Let us briefly recall that for any two words a, b ↑ B
+
n (the braid monoid on n strands), saying a ↖+

n b

means that a and b are equivalent under the n-strand braid monoid relations. Equivalently, we know
there exists a B

+
n -derivation from a to b. Let the derivation be listed as : R0, R1, ..., Rk.

Definition 4.8. A word w in either B+ or B+
m is bounded by n ↑ N if the index of every generator

occurring in w is strictly less than n.

Remark. For any word w ↑ B
+
n , a is bounded by n
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Theorem 4.8. Let a be bounded by n. If a ↖+
b, then every word R0, R1, ..., Rk in the derivation

from a to b is bounded by n

Proof. Formally, use induction on k. We will omit the details; intuitively, this holds because braid
monoid relations do not change the set of symbols in a word.

Thus, if a is bounded above by n, and for some b we have a ↖+
b, then we also have a ↖+

n b. By
this reasoning, for any a ↑ B

+
n where the length of a is l, since aϱn(a) ↖+ (!n)

l and !n is bounded
by n, we know that ϱn(i) is bounded by n. Therefore, the common multiples of a, b ↑ B

+
n must both

be bounded by n. Hence, since ac ↖+
bd and everything is bounded, ac ↖+

n bd

In Lean, this requires a bit of delicacy with typecasting and juggling hypotheses. Note that a
and b are originally of type Fin n, are cast to N, and then we obtain c and d also in N. Finally, we
are able to cast ac and bd back down to Fin n because of the boundedness hypotheses " but it is
far preferable to copy-pasting a thousand lines of code!

4.4 Cancellativity
Dehornoy pioneeered the use of rectangular grid representations to model re-write sequences [12].
This structure is used to prove cancellativity in the braid monoid. Grids can be generalized to
represent presented monoids on any set of relations; here, we only consider the specific case of grids
on the braid relations.

4.4.1 Grid Definition

A grid is defined inductively as either a cell, or two grids abutted horizontally or vertically so that
the relevant edges match.

Here are the cells (let i and j represent natural numbers):
ω

ω ω

ω

“empty"

εi

ω ω

εi

“top bottom"

ω

εi εi

ω

“side side"

εi

εi ω

ω

“corner"

εi

εj

εj

εi

εi εj

when |i↗ j| = 1 “adjacent"

εa

εb εb

εa

when |i↗ j| > 1 “separated"
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Note that in each cell, the two paths from top-left to bottom-right are equivalent under the braid
relations.

Now, we may simplify our diagrams by artificially drawing two arrows as one, and concatenating
their labels. This does not change the grid structure; it is merely notation. Thus, for the “separated"
case, we could draw:

εj

εi εiεj

εjεi

Now, we compose the cells to form larger grids.

Horizontal abutting: If

b

a c

d

and

e

c f

g

are grids, then so too is

b

a c

e

f

d g

Vertical abutting: If

b

a c

d

and

d

e f

g

are grids, then so too is

b

a c

d

e f

g

Once again, we use simplified notation - a, b, c, d, e, f may be braid monoid words of any length.
We may also write a grid omitting its inner arrows, simply showing the four sides and the words
labelling them. The last-drawn grid would thus be

b

ae cf

g

As a non-diagrammatic representation, we may write that we have a grid from (ae, b) to (cf, g). In
Lean, we give a predicate on four inputs, representing the left, top, right, and bottom sides. Thus,
we define
inductive grid : FreeMonoid N ≃ FreeMonoid N ≃ FreeMonoid N ≃ FreeMonoid N ≃

Prop
| empty : grid 1 1 1 1
| top_bottom (i : N) : grid 1 (of i) 1 (.of i)
| sides (i : N) : grid (of i) 1 (of i) 1
| top_left (i : N) : grid (of i) (of i) 1 1
| adjacent (i k : N) (h : i.dist k = 1) : grid (of i) (of k) (of i → of k) (of
k → of i)

| separated (i j : N) (h : i.dist j > 1) : grid (of i) (of j) (of i) (of j)
| vertical (h1: grid u v u↓ v↓) (h2 : grid a v↓ c d) : grid (u → a) v (u↓ → c) d
| horizontal (h1: grid u v u↓ v↓) (h2 : grid u↓ b c d) : grid u (v → b) c (v↓ → d)

By induction, we see that for any word w, we have the following grids:
w

ω ω

w

“top bottom word"

ω

w w

ω

“side side word"
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w

w ω

ω

“corner word"

Now it is time to begin to relate these grids to braid monoid equality. Another quick proof by

induction shows that if we have a grid

b

a c

d

then ad ↖+
bc. More specifically, if we have

b

a ω

ω

then a ↖+
b. Thus, if we have a grid, we can deduce equality under the braid monoid

relations. What about the other direction " if we know two words a, b are equivalent under the
braid monoid relations, is there a grid witnessing their equality? How about a grid who bottom
and right sides are both ε? (or in our shorter notation, is there a grid from (a, b) to (ε, ε)?) In the
following sections, we set up the machinery to answer this in the a!rmative.

4.4.2 Splitting Grids

Given a grid like so, with words of length > 1 on the top and right sides, one might well guess that
it was made out of four26 smaller grids:

b1

a1

b2

c

a2

d

And that would be correct.27 By induction on the structure of the above grid, we can prove that there

exist four grids

b1

a1 f

e

,

b2

f c1

g

,

e

a2 h

d1

,

h

g c2

d2

, making

b1

a1

b2

f c1

a2

e g

h c2

d1 d2

Unfortunately, this theorem does not tell us anything further about the values of e, f, g, h, and only
that c1 · c2 = c and d1 · d2 = d.

4.4.3 Determinative Spines

For some grids, however, knowing their left and top sides (the spine of a grid) is su!cient to know
their bottom and right sides. These proofs are not given explicitly in the reference text, so I will list
out the results here.28 We see that

26One need not split into four – a grid could be split horizontally intro two pieces or vertically into two pieces.
Repeated applications could split a grid all the way down to its individual cells

27Note that this property only holds for splitting the top arrow or the left-hand arrow. We have grids with word
length > 1 on the bottom and/or right that are not made of smaller grids – see the “adjacent" cell

28The proofs are routine, and I will spare the reader: each is approx 100 lines, as we must consider each of the 7
cases for a grid.
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ω

ω must be completed to

ω

ω ω

ω

Here, we take advantage of the notation shortcuts from the previous section. We draw only the
edges of a grid, leaving the inside blank - it is entirely possible for the above right grid to look like

so when fully drawn :

ω

ω ω

ω

ω

ω

ω

ω ω ω

. Continuing on, we have

For any i ↑ N,

εi

ω must be completed to

εi

ω ω

εi

For any i ↑ N,

ω

εi must be completed to

ω

εi εi

ω

For any i ↑ N,

εi

εi must be completed to

εi

εi ω

ω

Now we discuss the case where both legs of the spine are non-empty, but distinct.

If |i↗ j| = 1, then

εj

εi must be completed to

εj

εi εiεj

εjεi

(again we note that these are the labels on the entire bottom/right edges - no separate arrows
are shown)

Otherwise, we have |i↗ j| ↘ 2 and

εj

εi must be completed to

εj

εi εi

εj

The above properties are proved by a quick induction on the structure of a grid having the given
spine. Overall, these are straightforward inductions. We prove them in the order shown above, so
that the more complicated ones may use the simpler ones as lemmas or base cases.

No longer restricting ourselves to a single generator ωi on a spine leg, but rather allowing an
entire word a :

a

ω must be completed to

a

ω ω

a

.

ω

a must be completed to

ω

a a

ω

.

a

a must be completed to

a

a ω

ω

.

The above three facts are proved by induction on the length of a.
At this point, it is tempting to try to see that a grid with any spine is fully determined. In fact this
is the case! We will show that given any spine, there exists a grid with that spine, and the labels on
the other two edges are uniquely determined.

Let’s being with uniqueness.
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Theorem 4.9. Assume we have two grids,

b

a c

d

and

b

a c↑

d↑

Then the words c and c
↓ must be equal, and the same holds for d and d

↓.

Proof. We proceed by structural induction on

b

a c

d

. In the case where this grid is a cell, the

above properties of determinative spines will finish the proof. All that remains is the horizontal and
vertical cases. We give a proof for the horizontal case; the vertical case is analogous.

The grids must look like so,

b1

a

b2

c

d1 d2

and

b1

a

b2

c↑

d↑
1 d↑

2

where d = d1d2, d↓ =

d
↓
1d

↓
2, and and b = b1b2. By splittability, we know that for some e and e

↓, the grids have the following
structure:

b1

a

b2

e c

d1 d2

b1

a

b2

e↑ c↑

d↑
1 d↑

2

By our induction hypothesis applied to the left-hand subgrid, we know that d1 = d
↓
1 and e =

e
↓. Thus, the second grid becomes:

b1

a

b2

e c↑

d1 d↑
2

By another application of the inductive

hypothesis now to the right-hand side of the second grid, we see that c = c
↓ and d2 = d

↓
2. Hence,

d = d
↓, as desired.

Now, assuming a grid exists with a given spine, its right-hand and bottom edges are uniquely
defined. But does every spine have an associated grid? We will see that the answer is yes, but first
we develop a helpful property of grids, called stability.

4.4.4 Stability of Grids

Definition 4.9 (Stability). A grid

b

a c

d

is called stable if for a
↓
, b

↓ ↑ B
+ such that a ↖+

a
↓

and b ↖+
b
↓, there exist c

↓
, d

↓ ↑ B
+ such that we have a grid

b↑

a↑ c↑

d↑

with c ↖+
c
↓ and d ↖+

d
↓

Theorem 4.10. All grids are stable.

The proof itself is a bit of a bear : it requires a specific inductive form of re-writing. We proceed
by triple induction : first on the length of ac, then structurally on the derivation a ↖+

a
↓, and then

structurally on the derivation b ↖+
b
↓.

Here are a few lemmas to begin with :
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Lemma 4.11. Grids are symmetric : If we have a grid from (a, b) to (c, d), then there is a grid from
(b, a) to (d, c)

Lemma 4.12. Stability is symmetric : If we the grid from (a, b) to (c, d) is stable, then there is a
(unique!) grid from (b, a) to (d, c), and it is stable

Proceeding on with the proof of Theorem 4.10, we first consider a few specific cases, and break
them out into lemmas.

We begin with the case where the left-hand side of the grid has length 1 " that is, if it is ωk,
and the top of the grid is one part of a braid relation " either ωiωj with |i↗ j| > 1 or ωiωjωi with
|i↗ j| = 1. We show the results for any value of k, which requires casing within the proof based on
the relative value of k as compared to i and j.

Lemma 4.13. For any k ↑ N, i, j ↑ N with |i ↗ j| > 1, and braid monoid words c and d, the grid

εk

εi εj

c

d

is stable

Lemma 4.14. For any k ↑ N, i, j ↑ N with |i ↗ j| = 1, and braid monoid words c and d, the grid

εk

εi εj εi

d

c

is stable

Next, we consider the case where one part of the spine is the empty string.

Lemma 4.15. For any braid monoid word a, the grids

a

ω ω

a

and

ω

a a

ω

are both stable.

Note that once we have proven one of the two to be stable, Lemma 4.12 lets us conclude the other
is stable.

With these lemmas complete, we embark on the main proof. Details will be omitted here, for
the three nested inductions lead to many, many cases. Essentially, we split the grid when possible
and apply the induction hypothesis or previous lemmas.

Stability does give us a result we looked for early in this chapter:

Theorem 4.16. If a ↖+
b, there there is a grid from (a, b) to (ε, ε).

Proof. From the section on determinative spines, we know that there is a grid

a

a ω

ω

. Since

this grid is stable, and a ↖+
a and a ↖+

b (by hypothesis), we know there is a grid

b

a c

d

where c ↖+
ε and d ↖+

ε. Since length is preserved under braid monoid equivalence, we know the
length of both c and d must equal zero " hence c = ε and d = ε. Thus we have obtained the desired
grid.

Next up, armed with the powerful theorem of stability, we are able to prove existence of a grid
from any given spine. Intuitively, when building a grid, there is only one choice of cell to add in at
any step. Never do we reach an impasse, nor a multiplicity of choices.
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Theorem 4.17. For any a, b ↑ B
+, there is a grid with spine

b

a

Proof. Let c, d ↑ B
+ be such that ac ↖+

bd. Then we know there is a grid

bd

ac ω

ω

. We may

split this grid to obtain

b

a

d

f ω

c

e

h

g

ω

ω ω

And thus we have a grid

b

a f

e

4.4.5 Final Result

We prove left-cancellativity first. That is, we aim to prove that if ca ↖+
cb, then a ↖+

b. We proceed
by induction on the length of c. We show here only the case where the length of c is one; when the
length of c is zero the result is immediate, and other cases follow from the inductive hypothesis.

Since the length of c is one, c must equal ωi for some i. Thus, ωia ↖+
ωib. By theorem ??, we

know we have a grid

εib

εia ω

ω

Then for some c, d, e, f, g, h, i, j, k we may split this grid as so:

εi

εi c

b

h

d

a

e

f i

j k

Since hi ↖+
ε and jk ↖+

ς, we have h = i = j = k = ε. By determinative spines on the top-left
subgrid, we know c = ε and d = ε. Hence, we have

εi

εi ω

b

ω

ω

a

e

f ω

ω ω

Again by determinative spines, we know f = a and e = b.

51



εi

εi ω

b

ω

ω

a

b

a ω

ω ω

Hence the bottom-right grid witnesses a ↖+
b as desired! Left cancellativity is thus shown.

For right-cancellativity, we will make good use of the reversing function rev, which reverses
the letters in a representative of the equivalence class. Reversing is well-defined on braid monoid
elements, as we saw previously.

Lemma 4.18. For all braid monoid words a and b, a ↖+
b if and only if rev(a) ↖+

rev(b). Moreover,
rev(ab) = rev(b)rev(a).

Now, let us assume ac ↖+
bc. Thus, we know rev(ca) ↖+

rev(cb). Thus, rev(a)rev(c) ↖+

rev(b)rev(c) Then we may apply left-cancellativity to conclude that rev(a) ↖+
rev(b), so a ↖+

b as
desired! This procedure of turning a left property into a right property (or vice verse) can be used
for common multiples as well.

We have now shown common multiples and cancellativity, so we can perform the Ore localization
on the braid monoid and obtain an embedding into the braid group - finally, we can o!cially drop
the quotes around “braid” monoids!
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5 Solving the Word Problem

The word problem in a presented group is to determine, given any two words a, b in the presented
group, if a ↖ b.

There are a number of methods to solve the word problem for braids - there are normal forms,
combing algorithms, handle reduction algorithms.

We have chosen Dehornoy’s reversing algorithm [13] for the Lean formalization " it runs in
polynomial time and is su!ciently simple for a first attempt. Dehornoy goes on later in his book
to describe improvements and refinements. This could be done in later work, especially since the
machinery so far developed (localization) would be re-used. NOTE " sections 5.3-5.5 have not been
completely formalized in Lean. They are included as background information to understand the
novel pen-and-paper proof presented in chapter 6.

As a brief sketch, we will be able to convert every braid word to one in a special form, and then
compare the special forms of the two braids.

5.1 Reading Grids Backwards
At the moment, we have only discussed reading words o# grids following the direction of the arrows.
We can expand our understanding of a grid structure by defining a procedure for reading against
the direction of the arrows.

Instead of the labels on arrows representing elements in BW
+ (the set of braid monoid words), we

now allow them to represent elements of BW (the set of braid group words). Inverses are obtained
by reading against the direction of the arrow.

We note that we are discussing words, not elements of the braid group. To make this clear,
following Dehornoy, we write ωi in place of ω↑1

i . Notably, ωiωi ∀= ε, for they are clearly di#erent
strings. However, ωiωi ↖ ε.

Thus, we can read two paths from the bottom-left to the top-right in the following grid:

εi

εj

εk

εl

the upper is denoted ωi ωj and the lower is ωlωk .

For a side labelled with a word of length > 1, we read the letters of the word in opposite order,
and add an overbar to each letter. Consider the following grid:

εi

εl

εi

εj εj

εk εk

εl

The upper bottom-left to top-right path would be read as ωk ωj ωiωl, and the lower ωlωk ωj ωi.
Given a word w = ωa0ωa1 ...ωan , let w denote ωan ...ωa1 ωa0

What about arrows labelled ε? Since ε represents the empty string, it makes no contribution
to the word read o# the grid. Even when read in the opposite direction, it has the same (lack of)
e#ect. For now, we will use the unsatisfactory answer of simply writing ε when faced with an arrow
labelled ε, no matter the direction of the arrow.
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Why unsatisfactory? In this grid:
ω

ω ω

ω

both paths from top-left to bottom right, as well as both paths from bottom-left to top-right, would
all be labelled ς. For the moment, this will pose no problem to our algorithm : it terminates
immediately when given an empty word, so we do not need to model the situation with a grid. We
will return to this issue in chapter 6, and give a more detailed treatment there.

Notably, we have only given examples of reading a downwards-pointing arrow upwards. We could
read left-to-right arrows backwards as well, using the same procedure. However, we will not find a
use for this in the following algorithm.

5.2 Semi-Thue Systems
In the section on presented monoids, we discussed a rewriting system which is reflexive, transitive,
and symmetric. This is also called a Thue system. Often, however, one’s system is not symmetric
" this occurs especially when trying to reduce a string to some simpler or canonical form. In that
case, we define a semi-Thue system. Due to the lack of symmetry, the re-writing relation here is
not an equivalence relation, let alone a congruence. We thus cannot follow the approach used for
presented monoids, which used quotients.

Instead, we simply semi-Thue systems inductively. Given an alphabet A and a binary relation R

on A-strings, we use the ≃R operator to represent the one-step closure : ∋ a b c d ↑ A
→
, R(a, b) =⇒

cad ≃R cbd

Then →≃R represents the reflexive, transitive closure of ≃R. Inductively, it is defined as :

• reflexivity : For all a ↑ A
→, a →≃R a

• closure : For all a, b ↑ A
→, a ≃R b implies a

→≃R b

• transitivity : For all a, b, c ↑ A
→, if a →≃R b and b

→≃R c, then a
→≃R c

We now define SR, an alternate construction for →≃R, which will be useful for certain induction
proofs, defined inductively as :

• reflexivity : For all a ↑ A
→, SR(a, a)

• one-step transitive closure : if SR(a, b) and b ≃R c, then SR(a, c)

It is easy to prove by induction that for all a, b ↑ A
→, we have SR(a, b) if and only if a →≃R b.

As for the Lean implementation for Semi-Thue systems, we once again have multiple options for
the type of A→ : FreeMonoid A, List A, or String A. Because we are not using Congruence, we
do not need a Mul structure on the type we use. There is thus no need for FreeMonoid. The List
API is much stronger than that of FreeMonoid. In this case, we will be using our Semi-Thue system
for actual calculation, so features like List.getLast (this returns the last element of the list) will
be quite useful. Moreover, since FreeMonoid is defined as List, a semi-Thue system based on List
will still work nicely with the FreeMonoid-based PresentedMonoid definition.

Although String seems at first glance like exactly what we’d want, it is defined as a list of
Char. For the coming applications, we will need a more general alphabet, one which allows for more
complex expressions (e.g. involving option types and ordered pairs) to act as a single element of our
alphabet.
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5.3 Reversing a Word
(This section is has not been formalized in Lean.) Dehornoy’s algorithm is based on a reversing
procedure, which we will call reverse_braid. When given an initial input word w of the form uv

(where u and v contain no inverses), reverse_braid returns a word w
↓ of the form u

↓
v↓ (where u

↓

and v
↓ contain no inverses), such that w ↖ w

↓.
In fact reverse_braid can be applied multiple times to transform any word w into one of the

form u
↓
v↓ (where u

↓ and v
↓ contain no inverses), such that w ↖ w

↓. We call this reverse_any_braid.
It is defined as such : Any word can be written as u1v1u2v2...unvn (where any uk or vk may equal
the empty string). One recursively calls reverse_any_braid to reverse u2v2...unvn to u

↓
v↓, where

u2v2...unvn ↖ u
↓
v↓. Then, we have

u1v1u2v2...unvn ↖ u1v1u
↓
v↓

w ↖ u1v1u
↓
v↓

Then using reverse_braid, u1v1 reverses to some u
↓↓
v↓↓, such that u1v1 ↖ u

↓↓
v↓↓. Thus we obtain

w ↖ u
↓↓
v↓↓u↓

v↓

With one last application of reverse_braid, we reverse v↓↓u↓ to v
↓↓↓
u↓↓↓, obtaining

w ↖ u
↓↓
v
↓↓↓
u↓↓↓ v↓

w ↖ u
↓↓
v
↓↓↓
v↓u↓↓↓

And so w is reversed!

So far, we have treated reverse_braid as a black box. Now let’s look at exactly how this magic
is performed.

We begin with a reversing relation Rrev generated inductively by:
Rrev(ωiωi, ε) for all i
Rrev(ωiωj ,ωjωiωj ωi) when |i↗ j| = 1
Rrev(ωiωj ,ωjωi) when |i↗ j| ↘ 2

Note that if we have Rrev(a, b), a ↖ b under the braid relations; this extends to the Semi-Thue
system generated by Rrev as well.

We define the algorithm reverse_braid29 which, given a braid group word, iteratively replaces
the first occurrence of a negative-positive pair by an equivalent positive-negative word (following
Rrev) until no negative-positive pairs remain.30 Thus, the input, final output, and every intermediate
step are all equivalent under SRrev .
Remark. If a braid group word w reverses (under reverse_braid or reverse_any_braid) to ab

then w ↖ ab

Now, we must verify termination. Notably, once we show termination for reverse_braid,
termination for reverse_any_braid follows immediately. So, we will below simply show termination
for reverse_braid.

29we will use the terminology reverse_braid for the case when the initial input is in negative-positive form, and
reverse_any_braid otherwise. Note the recursive definition of SR, which we will use to model the reversing, always
preserves the first element of the initial input pair in any other appeal to SR

30The replacement may introduce new negative-positive pairs, so termination is not straightforward
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5.4 Reversing Grids
(this section hasn’t been fully formalized in Lean). We show termination by connecting reverse_braid
to grids (which have a finite number of cells; hence we will see there are only a finite number of steps
in reverse_braid).

Lemma 5.1. If there is a grid

b

a c

d

then reverse_braid ab terminates and returns dc.

This lemma is not found in Dehornoy;31 I aim to give a rigorous proof32 as future work.

We now show that reverse_braid terminates. Consider some input ab. We know by theorem
4.17 that there is a grid from (a, b) to some c, d. Thus, we may apply our lemma 5.1 to see that
reverse_braid ab terminates and returns dc.

Next, in order to show correctness, we connect reverse_braid to grids via an intermediate
structure, SRrev . This is done with four subproofs, each corresponding to an implication arrow in
the diagram below. We show the purple and green33 arrows; the blue arrow is lemma 5.1; the pink
requires a novel proof and will be discussed in chapter 6.

In the below diagram, we use reverse_braid ab = dc to mean “reverse_braid ab terminates
and returns dc for some braid monoid words d, c”

reverse_braid ab= dc

ab SRrev d
↓
c grid a b c d

Lemma 5.2. For a, b, c, d ↑ BW
+, if reverse_braid ab terminates and returns dc then ab SRrev dc

Proof. Immediate from the definition of reverse_braid.

Theorem 5.3. If there is a grid

b

a c

d

then ab SRrev dc

Proof. Assume we have a grid

b

a c

d

. We proceed by induction on the grid. If it is a cell,

either the relation SRrev holds by reflexivity or by a single application of Rrev. The induction
31He implicitly uses the claim that reverse_braid ab terminates and returns dc if and only if ab SRrev dc. The

forward direction is immediate; the reverse is tricky. I am thus taking a di!erent path to show termination.
32Vague proof sketch to convince the reader this is true; a rigorous proof will be future work : We will consider a list

of paths through the grid from the bottom-left to the top-right, arranged in a particular order (beginning from the left
side - top side path, we will "pop in" the first up-over corner (aka the first positive-negative string of length 2) in the
path, continuing until we reach the bottom side - right side path). Each will correspond to a step in reverse_braid
(due to empty arrows, multiple paths consecutive in the list may correspond to the same step in reverse_braid).

33In the end, the green arrow will not be necessary. However, I have formalized it in Lean, and I suspect it may be
helpful for creating a proof for the blue arrow (lemma 5.1), so I have included the details here
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steps proceed straightforwardly thanks to properties of semi-Thue systems " here is a sketch of the
horizontal appending case. The grid must take the form

b1

a

b2

f c

d1 d2

where b = b1b2 and d = d1d2. By our inductive hypothesis on the left-hand subgrid, we know

ab1 SRrev d1f

By properties of semi-Thue systems, this means

ab1b2 SRrev d1fb2

By our inductive hypothesis on the right-hand grid,

fb2 SRrev d2c

And again by properties of semi-Thue systems,

d1fb2 SRrev d1d2c

By transitivity, we thus achieve our goal, showing

ab1b2 SRrev d1d2c

Or more succinctly,
ab SRrev dc

5.5 Correctness
(this section has not been formalized in Lean) We begin with the procedure for showing equality in
the braid monoid. Given two braid monoid words a, b, a ↖+

b exactly when abSRrevε.

Theorem 5.4. a ↖+
b if and only if abSRrevε

Proof. By theorem 5.3, we have a ↖+
b if any only if we have a grid from (a, b) to (ε, ε), which was

shown in theorem 4.16.

How about solving the problem in the group? If we want to know if w1 ↖ w2, we can show that
w1(w2)↑1 ↖ ε. Here the the procedure : given words w1, w2, reverse w1(w2)↑1 to a word of the form
uv. Next, reverse vu (note the change in order!) to something of the form wz. I claim w1 ↖ w2

exactly when wz = ε. As this procedure consists of two reversings, and we have shown that reversing
terminates (for the original reversing procedure, which extends to the general reversing procedure
for any word in BW ), this procedure terminates.

We simply must show correctness. Since w1(w2)↑1 ↖ uv (because reversed words are equivalent
under the braid group relations as previously shown),
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w1(w2)
↑1 ↖ 1 ∃⇒ uv ↖ 1

∃⇒ u ↖ v

∃⇒ u ↖+
v (by embedding)

∃⇒ there is a grid from(u, v) to (ε, ε) (by theorem 4.16)
∃⇒ uv SRrev ε (by theorem 5.3 and the pink arrow)

Et voila! Thus, we have a terminating and correct algorithm to solve the braid word problem!
Except ... we skipped proving the pink arrow, didn’t we?
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6 Fortifying Dehornoy’s Approach

6.1 Dehornoy’s Work
Let’s review the bit to be proved:

Lemma 6.1. If ab SRrev a
↓
b↓, then there is a grid

b

a b↑

a↑

Patrick Dehornoy wrestled with this notion. In the textbook, he gives the following proof sketch:

Inversely, when uv SRrev uov0, consider a finite sequence of reversing steps leading from
uv to uov0. Let ”0 be the diagram obtained by writing vertically and from top to
bottom the letters of u and horizontally from left to right those of v starting from a
common summit. Then following the sequence of elementary reversings starting withuv
corresponds to constructing step by step from ”0 a grid ” with source (u, v) and target
(u0, v0).

It’s so tempting, one can practically see the grid being built step-by-step in one’s mind. Alas,
this is not a proof, and other papers of Dehornoy’s which discuss reversing grids also do not provide
proof [12]. Naive attempts based on keeping track of the cells filled in unfortunately fail to capture
the complexity of the construction required.

Below, we give a pen-and-paper proof of this claim. The proof defines two intermediate structures:
grid-style re-writing and partial grids. We give a proof sketch showing we can convert the normal
re-writing to grid-style rewriting. Then we show grid-style rewriting corresponds to a partial grid.
Finally, we connect the idea of partial grids to regular grids.

6.2 Grid-Style Re-Writing
Recall that Dehornoy’s “reversing” relation Rrev is defined inductively as so:

Rrev(ωiωi, ε) for all i
Rrev(ωiωj ,ωjωiωj ωi) when |i↗ j| = 1
Rrev(ωiωj ,ωjωi) when |i↗ j| ↘ 2

And from this we generate the Semi-Thue system SRrev Because the pair ωiωi re-writes under
SRrev to the empty string, no trace of its former existence would be preserved in the re-write

sequence. Yet such an occurrence is carefully noted in a grid; it would look like

εi

εi ω

ω

. The

arrows labelled ε remain present in the grid, even though they each represent an empty string. While
we will ignore them when reading o# a path through the grid, they are essential for the construction
of a grid " these rectangular grids may not have any gaps, and cells with ε-labelled arrows fill in
any potential gaps.

So, we need to build a system which will preserve these empty strings and the direction in which
their arrow points in the grid. We add two new symbols to our alphabet : ϖ and ϖ. ϖ represents a
right-pointing ε-arrow, and ϖ represents a down-pointing ε-arrow. Now, we give a new relation Rgrid

which tracks these ϖ’s and ϖ’s. Rgrid is defined inductively by
Rgrid(ωiωi, ϖϖ) for all i ↑ N
Rgrid(ϖωi,ωiϖ) for all i ↑ N
Rgrid(ωi ϖ, ϖ ωi) for all i ↑ N
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Rgrid(ϖ ϖ, ϖ ϖ)
Rgrid(ωiωj ,ωjωiωj ωi) when |i↗ j| = 1
Rgrid(ωiωj ,ωjωi) when |i↗ j| ↘ 2

These are based on grid cells; if we have Rgrid(a, b), we know there is a cell with a as the left-top
border and b as the the bottom-right border (reading, as always in the section, north-east, and using
an overbar to denote travelling opposite an arrow’s direction).

Rgrid(ϖωi,ωiϖ) corresponds to the cell

εi

ω ω

εi

Rgrid(ωi ϖ, ϖ ωi) corresponds to the cell

ω

εi εi

ω

Rgrid(ϖ ϖ, ϖ ϖ) corresponds to the cell

ω

ω ω

ω

Rgrid(ωiωj ,ωjωiωj ωi) when |i↗ j| = 1 corresponds to the cell

εj

εi

εi

εj

εj εi

Rgrid(ωiωj ,ωjωi) when |i↗ j| ↘ 2 corresponds to the cell

εj

εi εi

εj

Next, we make explicit the procedure to convert from reversing re-writes to grid-style rewrites!

6.3 Building Grid-Style Rewriting
Let S = {ωi|i ↑ N}

Definition 6.1. A positive word is an element of the set S
→; a negative word is an element of the

set (S)→

Definition 6.2. A positive grid word is an element of the set (S ↔ {ϖ})→; a negative grid word is an
element of the set (S ↔ {ϖ})→

Note that every negative word is a negative grid word, and similarly for positive words. Con-
versely, we may convert grid words back to “regular” words by deleting all instances of ϖ or ϖ from
them.

Theorem 6.2. Let a, b, c, d be positive words. If ab rewrites to cd under Rrev, then there exist
positive grid words e, f such that ab rewrites to ef under Rgrid. Moreover, when we convert e to
a regular word, it will be a positive word equal to c. When we convert f to a word, it will be a
positive word equal to d.

Proof. (Sketch)
We consider the relations of Rgrid which do not correspond to those of Rrev, and call them Rone.

That is, Rone is defined inductively by
Rone(ϖ ϖ, ϖ ϖ)
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Rone(ωi ϖ, ϖ ωi)
Rone(ϖωi,ωiϖ)

Given any string in our alphabet (all the generators, their overbar-versions, and ϖ and ϖ), we can
define the algorithm move_ones which iteratively re-writes the first occurrence of ϖ ϖ, ωi ϖ, or ϖωi

according to Rone.
I claim that this move_ones algorithm terminates. First, let us give an order <A on our alphabet.

<A is the smallest transitive relation satisfying:

• ωi <A ωj i# i < j

• ωi <A ωj i# i < j

• ωi <A ωj for all natural numbers i, j

• ϖ <A ϖ

• ωi <A ϖ for all natural numbers i

• ϖ <A ωi for all natural numbers i

<A is well-founded; the proof is by tedious casework, so I shall omit it here. (It is formalized in
Lean and available in the project repository).

Definition 6.3. Given an alphabet S
↓ and a relation RS↑ on S

↓, the shortlex relation over RS↑ is
defined on S

↓-strings by first comparing string length, and in the case of equal length, comparing
lexicographically over RS↑ .

Theorem 6.3. If RS↑ is well-founded, then the shortlex order over RS↑ is also well-founded. Again,
the proof is tedious, so omitted here. But the reader can rest assured it is formalized!

Thus, the shortlex order on <A is well-founded. Note that every call to move_ones is strictly
decreasing under the shortlex order on <A. Why? The length of the string never changes when
we apply move_ones. Thus, we move to the lexicographic ordering, and careful inspection of the
re-writes shows that the lexicographic order induced by <A decreases at each re-write. Thus, thanks
to the well-foundedness of the shortlex order on <A , move_ones is a terminating procedure.

Now, with the machinery set up, we can give a constructive proof. Here is the algorithm: Begin
with the string ab. Now, repetitively follow this procedure: Apply the next re-write from the Rrev-
derivation, then apply move_ones. Repeat for each step in the Rrev-derivation.

Termination is clear, for derivations are finite and we have shown move_ones terminates.
However, at each next step, when we go to perform the re-write from Rrev, how do we know that

we are set up and in position for the that re-write? Well, note that in move_ones you never change
the relative order of the elements from S ↔ S. The only possible issue could be if there were an ϖ or
a ϖ between them. I claim this is impossible: since any rewrite pair is of the form ωiωj , any ϖ or ϖ

between them would have been moved away by the move_ones procedure.
So, the algorithm is well-defined and terminating. Is it correct? Indeed it is! At the last step,

the word is the same as the last step in Rrev, just with some ϖs and ϖs floating around that will be
deleted when we go back to regular words, since they represent the empty string. So the theorem is
proved.
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6.4 Partial Grids
A partial grid is an inductively defined structure which generalizes the notion of a grid to include
“unfinished” grids, which require more cells to be added in the bottom/right area. Let’s use the
following as a motivating example:

ε2

ε1

ε1

ε2

ε1

ε2

ε2

ε2 ε1

ω

ε2

ε1

ε1

ε1

ω

ε2

ε2 ε1

We keep track of the following data from a partial grid : the spine (made of the left side and top side),
and the frontier, divided into three parts: the bottom frontier (which is the section that runs across),
the middle frontier (the zigzag-like portion in the middle), and the right frontier (the last part of
the frontier which points upwards). Let’s see the definition! We define partial grids inductively as

a cell

b

a c

d

(where

b

a c

d

is a grid cell)

with total frontier: c

d

bottom frontier :
d

middle frontier : empty

right frontier : c

a skeleton (of words a and b, each of length at least 1) a

b

with total frontier: a

b

bottom frontier : empty

middle frontier : a

b

right frontier : empty
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horizontal concatenation to a partial grid with non-empty middle frontier (e is non-
empty):

a

b f

c

g

h

i

d

e

with total frontier :
g

d

e·h·i

bottom frontier :
d

middle frontier :
e·h·i

right frontier : g

horizontal concatenation to a partial grid with empty middle frontier :

b

a c

e

f

d g

h

Which has total frontier :
f

d·g
h

bottom frontier :
d·g

middle frontier :
h

right frontier : f

Note that while the left-hand sub-partial-grid looks suspiciously like a grid, we have yet to prove
this.
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vertical concatenation to a partial grid with non-empty middle frontier (e is non-empty)

:

a

b

d

c

f

h

e

g

i

with has total frontier :
d

g

i·h·e

bottom frontier : g

middle frontier :
i·h·e

right frontier : d

vertical concatenation to a partial grid with empty middle frontier :
b

a c

d

e

f

g

h

with total frontier :
c·f

g

h

bottom frontier : g

middle frontier :
h

right frontier : c·f

We end with two short lemmas about partial grids, both shown by structural induction:

Lemma 6.4. The middle frontier of any partial grid is either empty, or is of the form ωim
↓
ωj for

some i, j ↑ N and some grid word m.
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Lemma 6.5. If the frontier of a partial grid is of the form ab with a and b both positive grid words,
the grid has empty middle frontier.

6.5 Building the Partial Grid
Next, let’s define an add_cell function on partial grids. When given a partial grid ” with a subset
of its frontier corresponding to the first element of a relation in Rrev, so of the form exf , where
there exists some y such that x Rrev y, add_cell outputs a partial grid ”↓ with frontier eyf . We
define add_cell function recursively.

If ” is a cell, we have a contradiction : its frontier is a positive word followed by a negative word,
so no element of its frontier can match the first element of an Rgrid re-write.

If ” is a skeleton (a, b), then let a = ωia
↓ and b = ωjb

↓ (note that the labels on a skeleton must
each have length one for the definition of a partial grid). Then its frontier is a↓ωiωjb

↓. There is
exactly one positive-negative pair right at the middle, ωiωj . Thus, we look at Rrev to determine the

g and h such that Rgrid(ωiωj , gh). This determines the cell

εj

εi h

g

.

Notably, we must have e = a
↓
, f = b

↓
, x = ωiωj , y = gh. So we are looking for a partial grid with

spine (a, b) and frontier a↓ghb↓ Now, if both a
↓ and b

↓ are ς, we are done. If not, there are three cases
to consider. We spell out the longest of the three, when neither a

↓ nor b
↓ is ε.

From here, we could do first vertical appending to obtain the partial grid

εj

εi h

g

a↑

Note that the middle frontier is non-empty - it is a
↓
gh. Thus, we may do horizontal appending

with another skeleton to obtain

εj

εi h

b↑

g

a↑

Thus, we have a partial grid with spine a, b and frontier a↓ghb↓ - notably, the frontier is what the
old frontier re-wrote to!

If ” was formed by appending a partial grid ”0 to a grid, recursively add the new cell into the
”0 (we omit details of showing the frontier is correct, as this is straightforward but lengthy).

The remaining two cases are trickier. Luckily, they are analogous, so we need only consider the
case of horizontally appending two partial grids ”1 and ”2, the first with non-empty middle frontier.
If the re-write fully occurs in the frontier of either ”1 or ”2, recursively add it in there, and update
the frontiers accordingly. Again, details are omitted.
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What happens if the re-write spans the space between the two? It might look something like
this, where the end of the middle frontier e is the purple arrow, and the cell to be added is the coral
rectangle:

The idea is that the re-write would correspond to a cell in the pink space, whose tiny spine would
span both frontiers. This would require that the last letter in e be ωi for some i. However, by our
lemma 6.4, the last letter in any non-empty middle frontier is of the form ωi. Thus, this case is not
possible.

Theorem 6.6. If ab SRgridc, then there is a partial grid with spine (a, b) and frontier c.

Proof. We proceed by induction on the derivation of c from ab.
If the step was reflexivity, we are quickly done. Since ab rewrites to ab thus ab must also be in

positive-negative form. Hence either a = ε or b = ε. In the case where a = ε, we have proved that

there is a grid

b

ω ω

b

Since any grid is a partial grid with empty frontier, we are done. A similar argument works for
b = ε.

For the other case, the transitive one-step closure, we know ab rewrites to to exf , x Rgrid y, and
hence ab rewrites to to eyf .

Inductively, we know there is a partial grid ”1 with spine (a, b) and total frontier exf . We aim
to add to this partial grid, obtaining one with spine (a, b) and total frontier eyf . Aha! We may
simply call our add_cell function, which performs exactly as required.

6.6 Empty Middle Frontiers
This theorem has been formalized in Lean.

Theorem 6.7. Given a partial grid ” with spine (a, b), bottom frontier d, middle frontier ε, and
right frontier c, I claim that there is a grid from (a, b) to (c, d).
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Proof. We proceed by induction on the structure of a partial grid ” with empty middle frontier.

• If ” is a cell, we are done as all cells are grids.

• If ” is a skeleton, its middle frontier is non-empty.

• If ” is the horizontal concatenation of a partial grid ”0 with empty middle frontier and a
partial grid ”1, since the middle frontier of ” is defined as the middle frontier of ”1, ”1 has
empty middle frontier. By the induction hypothesis, both ”1 and ”0 are grids. Therefore, by
appending the two grids ”0 and ”1 we see that ” is itself a grid.

• If ” is the horizontal concatenation of two partial grids ”1 and ”2, where the middle frontier
of ”1 is non-empty, ” will have a non-empty middle frontier, so we are done.

• The vertical cases are analogous.

Time to put everything together! Assume ab SRrev a
↓
b↓. Then we know ab SRgrid a

↓↓
b↓↓ where deleting

all occurrence of ϖ and ϖ leaves a
↓, and similarly for b

↓↓ and b
↓. Thus, by theorem 6.5, we know there

is a there is a partial grid ”0 with spine (a, b) and frontier a
↓
b↓. Thus, the middle frontier of ”0 is

empty by lemma 6.5, so there is a grid

b

a b↑

a↑

as desired. Voilà!
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7 Future Work

I certainly aim to complete the Lean proof of the equivalence between grids and reversing re-writes.
That will lead naturally into implementing a verified Lean algorithm to solve the braid isotopy
problem. Other close-in-reach formalization goals include defining the center of the braid group,
and implementing a (slow!) solution to the braid conjugacy problem. Further-down-the-line goals
would be to implement a faster algorithm, Dehornoy’s handle-reduction algorithm. This requires
giving an order on braids.

Personally, I am intrigued by the project of showing the geometric definition of braids coincides
with Artin’s algebraic presentation. This would be a larger undertaking! I am also interested in
keeping up with the fused braids research (formalizing machine knitting) - perhaps I could be some
help in getting a few of the proofs for fused braids.

Stepping a bit outside straight formalization, I also aim to take advantage of Lean’s infoview to
make a widget which displays braids. So far, I am able to display an image of a braid word typed
in Lean. It looks like so :

Thanks to Jim McCann for the visualization code!
The CMU Textiles Lab has also made a visualizer displaying clickable arrows to e#ect braid

moves. I would like to have the user interact with the Lean widget and generate Lean code. For
example, a user could be given a braid and prove it equal to the empty braid by physically untangling
the strands by clicking and dragging.

I do not expect this functionality to aid professional mathematicians in their research. I see this
as a fantastic opportunity for outreach and education. It would be similar to the existing interactive
Lean widgets (a rubik’s cube, a maze, and a sudoku puzzle.)

I hope to spend more time poring through old Russian records to track down Weinberg, Ivanovsky,
and Markov. I plan to beef up the historical section with more context, close readings, and
supplementary works by the main authors (i.e. Reidemeister’s philosophy). I think it would be
nice to write up a history of braids, especially since there is plenty of primary source material that
remains unstudied!
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A Code

Below is an outline of the major definitions and theorems developed in this project. Proof of lemmas
and most theorems are omitted. The full, up-to-date code repository is available at https://github.com/hannahfechtner/braids_better

A.1 Definition of Artin-Tits Groups

variable (M : ε ≃ ε ≃ N)

def alternate (a b : ε) (k : N) :=
match k with
| 0 => 1
| Nat.succ n => FreeGroup.of a → alternate b a n

def artin_tits_rel : ε ≃ ε ≃ FreeGroup (ε) := fun i j => alternate i j (M i j) →

(alternate j i (M i j))↑1

def ArtinTitsGroup := PresentedGroup (artin_tits_rel M)

A.2 Definition of Braid Groups

def M_braid (i j : N) : N :=
match j-i with
| 0 => 0
| Nat.succ n =>

match n with
| 0 => 3
| Nat.succ _ => 2

def M_braid_fin (n : N) (i j : Fin n) : N := if n = 0 ¬ n = 1 then 1 else
M_braid i.val j.val

def BraidGroupInf := ArtinTitsGroup M_braid

def BraidGroupFin (n : N) := ArtinTitsGroup (M_braid_fin n)

def ωi (k : N) : BraidGroupInf := PresentedGroup.of k

def ω {n : N} (k : Fin n) : BraidGroupFin (n + 1) := PresentedGroup.of k
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A.3 Presented Monoids

variable {ε : Type→}

/-- Given a set of relations, ↭rels↭, over a type ↭ε↭, ↭PresentedMonoid↭ constructs
the monoid with generators ↭x : ε↭ and relations ↭rels↭ as a quotient of a
congruence structure over rels. -/

def PresentedMonoid (rel : FreeMonoid ε ≃ FreeMonoid ε ≃ Prop) :=
(conGen rel).Quotient

def PresentedMonoid.rel (rel : FreeMonoid ε ≃ FreeMonoid ε ≃ Prop) :=
ConGen.Rel rel

instance {rels : FreeMonoid ε ≃ FreeMonoid ε ≃ Prop} : Monoid (PresentedMonoid
rels) := Con.monoid (conGen rels)

/-- The quotient map from the free monoid on ↭ε↭ to the presented monoid with the
same generators and the given relations ↭rels↭. -/

def mk (rels : FreeMonoid ε ≃ FreeMonoid ε ≃ Prop) : FreeMonoid ε ≃→

PresentedMonoid rels where
toFun := Quotient.mk (conGen rels).toSetoid
map_one↓ := rfl
map_mul↓ := fun _ _ => rfl

/-- ↭of↭ is the canonical map from ↭ε↭ to a presented monoid with generators ↭x : ε↭

. The term ↭x↭ is mapped to the equivalence class of the image of ↭x↭ in ↭

FreeMonoid ε↭. -/
def of (rels : FreeMonoid ε ≃ FreeMonoid ε ≃ Prop) (x : ε) : PresentedMonoid

rels := mk rels (.of x)

section inductionOn

variable {ε1 ε2 ε3 : Type→} {rels1 : FreeMonoid ε1 ≃ FreeMonoid ε1 ≃ Prop}
{rels2 : FreeMonoid ε2 ≃ FreeMonoid ε2 ≃ Prop} {rels3 : FreeMonoid ε3 ≃
FreeMonoid ε3 ≃ Prop}

local notation "P1" => PresentedMonoid rels1
local notation "P2" => PresentedMonoid rels2
local notation "P3" => PresentedMonoid rels3

@[elab_as_elim, induction_eliminator]
protected theorem inductionOn {ϑ : P1 ≃ Prop} (q : P1) (h : ∋ a, ϑ (mk rels1 a)) :

ϑ q := Quotient.ind h q

@[elab_as_elim]
protected theorem inductionOn2 {ϑ : P1 ≃ P2 ≃ Prop} (q1 : P1) (q2 : P2)

(h : ∋ a b, ϑ (mk rels1 a) (mk rels2 b)) : ϑ q1 q2 :=
Quotient.inductionOn2 q1 q2 h

@[elab_as_elim]
protected theorem inductionOn3 {ϑ : P1 ≃ P2 ≃ P3 ≃ Prop} (q1 : P1)

(q2 : P2) (q3 : P3) (h : ∋ a b c, ϑ (mk rels1 a) (mk rels2 b) (mk rels3 c)) :
ϑ q1 q2 q3 := Quotient.inductionOn3 q1 q2 q3 h

end inductionOn
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section ToMonoid

variable {ε M : Type→} [Monoid M] (f : ε ≃ M) {rels : FreeMonoid ε ≃ FreeMonoid
ε ≃ Prop} (h : ∋ a b : FreeMonoid ε, rels a b ≃ FreeMonoid.lift f a =
FreeMonoid.lift f b)

/-- The extension of a map ↭f : ε ≃ M↭ that satisfies the given relations to a
monoid homomorphism from ↭PresentedMonoid rels ≃ M↭. -/

def lift : PresentedMonoid rels ≃→ M := Con.lift _ (FreeMonoid.lift f)
(Con.conGen_le h)

theorem toMonoid.unique (g : MonoidHom (conGen rels).Quotient M)
(hg : ∋ a : ε, g (of rels a) = f a) : g = lift f h :=

Con.lift_unique (Con.conGen_le h) g (FreeMonoid.hom_eq fun x ̸≃ let_fun this :=
hg x; this)

end ToMonoid

API for rewrite system

theorem refl : PresentedMonoid.rel rels a a := ConGen.Rel.refl _
theorem reg_rw (c d) (h : rels a b) : PresentedMonoid.rel rels (c → a → d) (c → b →

d) :=
ConGen.Rel.mul (ConGen.Rel.mul (ConGen.Rel.refl _) (ConGen.Rel.of _ _ h))

(ConGen.Rel.refl _)
theorem symm_rw (c d) (h : rels a b) : PresentedMonoid.rel rels (c → b → d) (c →

a → d) :=
ConGen.Rel.mul (ConGen.Rel.mul (ConGen.Rel.refl _)

(ConGen.Rel.symm (ConGen.Rel.of _ _ h))) (ConGen.Rel.refl _)

theorem mul (h1 : PresentedMonoid.rel rels a b) (PresentedMonoid.rel rels c d) :
PresentedMonoid.rel rels (a → c) (b → d) := ConGen.Rel.mul h1 h2

theorem mul_left (h1 : rels a b) (h2 : rels c d) :
PresentedMonoid.rel rels (a → c) (b → d) := ConGen.Rel.mul (ConGen.Rel.of _ _
h1) h2

theorem mul_right (h1 : PresentedMonoid.rel rels a b) (h2 : rels c d) :
PresentedMonoid.rel rels (a → c) (b → d) := ConGen.Rel.mul h1 (ConGen.Rel.of _
_ h2)

theorem append_left (h : PresentedMonoid.rel rels c d) :
PresentedMonoid.rel rels (a → c) (a → d) := ConGen.Rel.mul refl h

theorem append_right (h : PresentedMonoid.rel rels a b) :
PresentedMonoid.rel rels (a → c) (b → c) := ConGen.Rel.mul h refl

theorem rel_left (h : rels c d) : PresentedMonoid.rel rels (a → c) (a → d) :=
ConGen.Rel.mul refl (ConGen.Rel.of _ _ h)

theorem rel_right (h : rels a b) : PresentedMonoid.rel rels (a → c) (b → c) :=
ConGen.Rel.mul (ConGen.Rel.of _ _ h) refl

theorem rel (h : rels a b) : PresentedMonoid.rel rels a b := ConGen.Rel.of _ _ h

theorem symm (h : rels a b) : PresentedMonoid.rel rels b a :=
ConGen.Rel.symm (ConGen.Rel.of _ _ h)

theorem swap (h : PresentedMonoid.rel rels a b) PresentedMonoid.rel rels b a :=
ConGen.Rel.symm h
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Equivalent version

inductive rw_system (rels : FreeMonoid ε ≃ FreeMonoid ε ≃ Prop) : FreeMonoid ε
≃ FreeMonoid ε ≃ Prop

| refl : rw_system rels a a
| reg : ∋ c d, rels a b ≃ rw_system rels (c → a → d) (c → b → d)
| symm : ∋ c d, rels a b ≃ rw_system rels (c → b → d) (c → a → d)
| trans : rw_system rels a b ≃ rw_system rels b c ≃ rw_system rels a c

private theorem rw_system_equiv_presented_monoid (rels : FreeMonoid ε ≃
FreeMonoid ε ≃ Prop) : rw_system rels a b ∅ rel rels a b

theorem rel_induction_rw {P : FreeMonoid ε ≃ FreeMonoid ε ≃ Prop} {a b :
FreeMonoid ε}
(h : rel rels a b)
(h1 : ∋ (a : FreeMonoid ε), P a a)
(h2 : ∋ a b {c d}, rels a b ≃ P (c → a → d) (c → b → d))
(h3 : ∋ a b {c d}, rels b a ≃ P (c → a → d) (c → b → d))
(h4 : ∋ a b c, P a b ∝ P b c ≃ P a c) : P a b

Universal Property
variable {ε M : Type→} [Monoid M] (f : ε ≃ M)
variable {rels : FreeMonoid ε ≃ FreeMonoid ε ≃ Prop}
variable (h : ∋ a b : FreeMonoid ε, rels a b ≃ FreeMonoid.lift f a =

FreeMonoid.lift f b)

/-- The extension of a map ↭f : ε ≃ M↭ that satisfies the given relations to a
monoid homomorphism from ↭PresentedMonoid rels ≃ M↭. -/

def toMonoid : MonoidHom (PresentedMonoid rels) M :=
Con↓.lift _ (FreeMonoid.lift f) (Con.conGen_le h)

theorem toMonoid.unique (g : MonoidHom (conGen rels).Quotient M)
(hg : ∋ a : ε, g (of rels a) = f a) : g = toMonoid f h :=

Con↓.lift_unique (proof_1 f h) g (FreeMonoid.hom_eq fun x ̸≃ let_fun this := hg
x; this)

Support for presented monoids over isomorphic types
variable {ϖ : Type→} (e : ε ℜ ϖ) (rels : FreeMonoid ε ≃ FreeMonoid ε ≃ Prop)

/-- presented monoids over isomorphic types (with the relations converted
appropriately) are isomorpic -/

noncomputable def equivPresentedMonoid (rel : FreeMonoid ϖ ≃ FreeMonoid ϖ ≃
Prop) :
PresentedMonoid rel ℜ→ PresentedMonoid (FreeMonoid.comap_rel e rel) :=

(Con.comapQuotientEquivOfSurj _ _ (FreeMonoid.congr_iso
e).surjective).symm.trans <|

Con.congr (Con.comap_conGen_of_Bijective (FreeMonoid.congr_iso e)
(MulEquiv.bijective _) _ rel)
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A.4 Braid Monoid

inductive braid_rels_multi {n : N} : FreeMonoid (Fin (n + 2)) ≃ FreeMonoid (Fin
(n + 2)) ≃ Prop

| adjacent (i : Fin (n + 1)) : braid_rels_multi (of i.castSucc → of i.succ → of
i.castSucc) (of i.succ → of i.castSucc → of i.succ)

| separated (i j : Fin n) (h : i → j) : braid_rels_multi (of
i.castSucc.castSucc → of j.succ.succ) (of j.succ.succ → of i.castSucc.castSucc)

def braid_rels_m : (n : N) ≃ (FreeMonoid (Fin n) ≃ FreeMonoid (Fin n) ≃ Prop)
| 0 => (ω _ _ => False)
| 1 => (ω _ _ => False)
| n + 2 => @braid_rels_multi n

def BraidMonoid (n : N) := PresentedMonoid (braid_rels_m n.pred)

inductive braid_rels_m_inf : FreeMonoid N ≃ FreeMonoid N ≃ Prop
| adjacent (i : N): braid_rels_m_inf (of i → of (i+1) → of i) (of (i+1) → of i →

of (i+1))
| separated (i j : N) (h : i +2 → j) : braid_rels_m_inf (of i → of j) (of j →

of i)

def BraidMonoidInf := PresentedMonoid braid_rels_m_inf

namespace BraidMonoidInf

def rel := PresentedMonoid.rel braid_rels_m_inf

protected def mk := PresentedMonoid.mk (braid_rels_m_inf)

@[induction_eliminator]
protected theorem inductionOn {ϑ : BraidMonoidInf ≃ Prop} (q : BraidMonoidInf)

(h : ∋ a, ϑ (BraidMonoidInf.mk a)) : ϑ q :=
Quotient.ind h q

/--length of an element of the braid monoid -/
def length : BraidMonoidInf ≃ N :=

PresentedMonoid.lift_of_mul (FreeMonoid.length)
(fun h1 h2 => by rw [length_mul, length_mul, h1, h2]) (fun _ _ h => by
induction h with
| adjacent i => simp only [length_mul, length_of, Nat.reduceAdd]
| separated i j _ => simp only [length_mul, length_of, Nat.reduceAdd])

/-- the set of generators appearing in a braid word -/
def generators : BraidMonoidInf ≃ Finset N :=

PresentedMonoid.lift_of_mul (FreeMonoid.symbols)
(fun ih1 ih2 => by rw [symbols_mul, symbols_mul, ih1, ih2])
(fun a b h => by induction h with
| adjacent i =>

ext x
simp only [symbols_mul, symbols_of, Finset.union_assoc, Finset.mem_union,
Finset.mem_singleton]
tauto

| separated i j h =>
simp only [symbols_mul, symbols_of]
exact Finset.union_comm _ _)
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private theorem reverse_helper (a b : FreeMonoid N) (h : braid_rels_m_inf a b) :
mk braid_rels_m_inf a.reverse = mk braid_rels_m_inf b.reverse

/-- reverses the braid monoid code -/
def reverse : BraidMonoidInf ≃ BraidMonoidInf :=

PresentedMonoid.lift_of_mul (fun x => mk braid_rels_m_inf <| FreeMonoid.reverse
x)

(fun h1 h2 => by simp [reverse_mul, mul_mk, h1, h2]) reverse_helper

end BraidMonoidInf

Injection into the braid group

lemma BraidGroupInf.braid (i : N) :
ωi i →

ωi i.succ →
ωi i = ωi i.succ →

ωi i →
ωi i.succ

lemma BraidGroupInf.comm {i j : N} (h : i.dist j > 1) :
ωi i →

ωi j = ωi j →
ωi i

theorem embed_inf_helper (a b : FreeMonoid N) (h : braid_rels_m_inf a b) :
(FreeMonoid.lift fun a => ωi a) a = (FreeMonoid.lift fun a => ωi a) b :=

braid_rels_m_inf.casesOn h BraidGroupInf.braid (fun _ _ d => BraidGroupInf.comm
d)

def embed_inf : BraidMonoidInf ≃→ BraidGroupInf :=
PresentedMonoid.toMonoid (fun a => ωi a) embed_inf_helper
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A.5 Ore Localization
Here we give the constructive version, which may not make it into Mathlib.
We begin with the case of the Ore localization of a monoid by itself

class CommonLeftMultipleMonoid (M : Type→) extends Monoid M where
cl1 : M ≃ M ≃ M
cl2 : M ≃ M ≃ M
cl_spec : ∋ a b : M, cl2 a b → a = cl1 a b → b

class OreMonoid (M : Type→) extends CommonLeftMultipleMonoid M, CancelMonoid M

open OreMonoid
variable {M : Type→} [OreMonoid M]

instance : OreLocalization.OreSet (ℑ : Submonoid M) where
ore_right_cancel := by

intro r1 r2 s eq
use 1
simp only [OneMemClass.coe_one, one_mul]
exact mul_right_cancel eq

oreNum r s := CommonLeftMultipleMonoid.cl1 r s
oreDenom r s := ⇓CommonLeftMultipleMonoid.cl2 r s, trivial⇔
ore_eq := fun r s => CommonLeftMultipleMonoid.cl_spec _ _

local notation "OreLocalizationSelf" => @OreLocalization M _ (ℑ : Submonoid M) _
M _

/-- when localizing by the entire monoid, the result is a group -/
instance : Group (OreLocalizationSelf) where

inv := OreLocalization.liftExpand (fun a b => b.val / ⇓a, trivial⇔)
fun a b c d => by

apply OreLocalization.oreDiv_eq_iff.mpr
use 1, b
simp

mul_left_inv := OreLocalization.ind fun _ _ => OreLocalization.mul_inv _ _

/-- simplified universal property when localizing by the entire monoid -/
def fraction_group_to_group {G1 : Type} [Group G1] (f : M ≃→ G1) :

OreLocalizationSelf ≃→ G1 :=
OreLocalization.universalMulHom f
⇓⇓(fun (x : ((ℑ : Submonoid M))) => toUnits (f x.val)),
by simp only [OneMemClass.coe_one, map_one]⇔, by simp only
[Submonoid.coe_mul, map_mul, Subtype.forall, implies_true, forall_const]⇔
(by intro s ; simp)

/-- uniqueness of the simplified universal property when localizing by the entire
monoid -/

theorem fraction_group_to_group_unique {G1 : Type} [Group G1] (f : M ≃→ G1)
(φ : OreLocalizationSelf ≃→ G1)
(h : ∋ (r : M), (φ ⇒ OreLocalization.numeratorHom) r = f r)
: φ = fraction_group_to_group f :=

OreLocalization.universalMulHom_unique f _ _ _ h

Next we consider the case of a presented monoid being localized
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variable {ε : Type} [Monoid ε] {rels : FreeMonoid ε ≃ FreeMonoid ε ≃ Prop}

def pm_rels_to_pg_rels (rels : FreeMonoid ε ≃ FreeMonoid ε ≃ Prop) : Set
(FreeGroup ε) :=

{FreeMonoid.lift (FreeGroup.of) x.1 → (FreeMonoid.lift (FreeGroup.of) x.2)↑1 |
x ↑ setOf (fun (a : FreeMonoid ε ⇐ FreeMonoid ε) => rels a.1 a.2)}

theorem rels_pg_iff_rels_pml {G1 : Type} [Group G1]
{rels : FreeMonoid↓ ε ≃ FreeMonoid↓ ε ≃ Prop}
(f : ε ≃ G1) :
(∋ r ↑ (pm_rels_to_pg_rels rels), ((FreeGroup.lift f) r ) = 1) ∅ (∋ r1 r2,
rels r1 r2 ≃
(FreeMonoid↓.lift f r1 = FreeMonoid↓.lift f r2))

For readability, I have used pml to be the presented monoid localization of the presented monoid
with relations rels by the entire presented monoid.

/-- the universal property for the Ore localization of a presented monoid by
itself -/

def presented_fraction_group_to_group {G1 : Type} [Group G1] (f : ε ≃ G1)
(universal_h : ∋ r1 r2, rels r1 r2 ≃ (FreeMonoid↓.lift f r1 = FreeMonoid↓.lift
f r2)) : pml ≃→ G1 :=

@OreLocalization.universalMulHom ((PresentedMonoid rels)) _
(ℑ : Submonoid (PresentedMonoid rels)) _ G1 _

⇓⇓PresentedMonoid.lift_hom f (lift_eq_lift_of_rel f universal_h), rfl⇔,
by simp only [map_mul, implies_true]⇔ (map_denom_into_units f universal_h) (fun
_ => rfl)

theorem presented_fraction_group_to_group_unique {G1 : Type} [Group G1] (f : ε ≃
G1) (universal_h : ∋ r1 r2, rels r1 r2 ≃ (FreeMonoid↓.lift f r1 =
FreeMonoid↓.lift f r2)) (φ : pml ≃→ G1) : (∋ (r : ε), φ

(@OreLocalization.numeratorHom _ _ _ _
(PresentedMonoid.of rels r)) = f r) ≃ φ =
presented_fraction_group_to_group _ _ _ f universal_h

def pml_to_presented_group : pml ≃→ PresentedGroup (pm_rels_to_pg_rels rels)

def presented_group_to_pml : PresentedGroup (pm_rels_to_pg_rels rels) ≃→ pml

theorem comp_pg_pml_pml_pg_eq_id : MonoidHom.comp presented_group_to_pml
pml_to_presented_group = ⇓⇓id, rfl⇔, fun _ _ => rfl⇔

theorem comp_pml_pg_pg_pml_eq_id : MonoidHom.comp pml_to_presented_group
presented_group_to_pml = ⇓⇓id, rfl⇔, fun _ _ => rfl⇔

--will go in the monoid hom file - it is true more generally, but it↓s convenient
to have the MulHom form here

theorem comp_eq_of_hom_comp_eq {ε ϖ γ : Type→} [Monoid ε] [Monoid ϖ] [Monoid γ]
{ab : MonoidHom ε ϖ}
{bc : MonoidHom ϖ γ} {ac : MonoidHom ε γ} (h : MonoidHom.comp bc ab = ac) :
bc.toFun ⇒ ab.toFun = ac.toFun:=

funext fun x ̸≃ ((congrArg (fun y ̸≃ (bc ⇒ ab) x = y x) h.symm)).mpr rfl

/-- the localization of a presented monoid is isomorphic to the presented group
over the same relations-/
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def presentedMonoidLocalizationEquivPresentedGroup : pml ℜ→ PresentedGroup
(pm_rels_to_pg_rels rels) :=

⇓⇓pml_to_presented_group, presented_group_to_pml,
Function.leftInverse_iff_comp.mpr <| comp_eq_of_hom_comp_eq
comp_pg_pml_pml_pg_eq_id, Function.rightInverse_iff_comp.mpr <|
comp_eq_of_hom_comp_eq comp_pml_pg_pg_pml_eq_id⇔, map_mul
pml_to_presented_group⇔
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A.6 Common Multiples
A.6.1 ω Braids

local instance : Coe N (FreeMonoid N) :=
⇓of⇔

private def count_up_helper : N ≃ N ≃ N ≃ FreeMonoid N
| 0, _, _ => 1
| n+1, i, j => (of i) → (count_up_helper n (i+1) j)

/-- ↭count_up i j↭ returns a FreeMonoid element corresponding to a list of
consecutive ascending integers beginning at i (inclusive) up to j (exclusive)
-/

def count_up (i j : N) : FreeMonoid N := count_up_helper (j - i) i j

private def count_down_helper : N ≃ N ≃ N ≃ FreeMonoid N
| 0, _, _ => 1
| n+1, i, j => (count_down_helper n i (j+1)) → (j)

/-- ↭count_down i j↭ returns a FreeMonoid element corresponding to a list of
consecutive descending integers beginning at i-1 down to j (inclusive) -/

def count_down (i j : N) : FreeMonoid N := count_down_helper (i - j) i j

/-- A FreeMonoid element corresponding to a list of consecutive numbers between i
and i, including the smaller of i and j and excluding the larger of i and j -/

def sigma_bar (i j : N) : FreeMonoid (N) :=
if i = j then 1 else if i < j then count_up i j else count_down i j

theorem prepend_k (i j k : N) (h1: i + 2 → j) (h2 : i < k ∝ k < j) :
BraidMonoidInf.mk (of k → (sigma_bar i j)) = BraidMonoidInf.mk ((sigma_bar i
j) → (of (k-1)))

theorem append_k (i j k : N) (h1: i + 2 → j) (h2 : i<k∝k<j) : BraidMonoidInf.mk
(of (k-1) → (sigma_bar j i)) = BraidMonoidInf.mk ((sigma_bar j i) → of k)

A.6.2 ! Braids

def delta_bar : N ≃ FreeMonoid N
| 0 => 1
| n+1 => (sigma_bar 0 (n+1)) → (delta_bar n)

theorem delta_bar_bounded (n : N) : ∋ k ↑ delta_bar n, k < n

theorem factor_delta (n : N) (h : 1 → n) : BraidMonoidInf.mk (delta_bar n) =
BraidMonoidInf.mk ((delta_bar (n-1))→(sigma_bar n 0))

theorem swap_sigma_delta (n : N) : ∋ i : N , (i → n-1) ≃
BraidMonoidInf.mk (of i → (delta_bar n)) = BraidMonoidInf.mk (delta_bar n →

of (n-1-i))

theorem swap_word_delta {n : N} {w : FreeMonoid N} (w_bounded : ∋ x, x ↑ w ≃ x <
n) :
BraidMonoidInf.mk (w → delta_bar n) = BraidMonoidInf.mk (delta_bar n →

FreeMonoid.map (ω i => (n-1)-i) w)
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def boundary (n i: N) : FreeMonoid N :=
match n with
| 0 => 1
| 1 => 1
| k+2 => if i = n - 1 then sigma_bar (n-1) 0 → FreeMonoid.map (ω i => i+1)
(delta_bar (n-1))

else boundary (k+1) i → sigma_bar n 0

theorem boundary_spec (i n : N) (h_n : n > 0) (h : i → n-1) : BraidMonoidInf.mk
(delta_bar n) = BraidMonoidInf.mk (of i → boundary n i)

theorem boundary_bounded (i n : N) (h_n : 0 < n) (h : i → n-1) : ∋ x ↑ boundary
n i, x < n

theorem multiple_delta_bar (u : FreeMonoid N) (l n : N) (h : FreeMonoid.length u
<= l)

(bounded : ∋ x, x ↑ u ≃ x < n) : ↙ w, BraidMonoidInf.mk (u → w) =
BraidMonoidInf.mk ((delta_bar n)^l) ∝ (∋ x, x ↑ w ≃ x < n)

theorem common_right_mul_inf (u v : BraidMonoidInf) : ↙ (u↓ v↓ : FreeMonoid N ),
u → BraidMonoidInf.mk v↓ = v → BraidMonoidInf.mk u↓ := by

induction↓ u with u
induction↓ v with v
rcases (is_bounded u) with ⇓k1, hk1⇔
rcases (is_bounded v) with ⇓k2, hk2⇔
have u_under : ∋ x ↑ u, x < Nat.max k1 k2 :=

fun x h => Nat.lt_of_lt_of_le (hk1 x h) (Nat.le_max_left k1 k2)
have v_under : ∋ x ↑ v, x < Nat.max k1 k2 :=

fun x h => Nat.lt_of_lt_of_le (hk2 x h) (Nat.le_max_right k1 k2)
have u_length := Nat.le_max_left (FreeMonoid.length u) (FreeMonoid.length v)
have v_length := Nat.le_max_right (FreeMonoid.length u) (FreeMonoid.length v)
rcases (multiple_delta_bar u (Nat.max (FreeMonoid.length u) (FreeMonoid.length
v)) (Nat.max k1 k2)
u_length u_under) with ⇓v↓, hv↓, _⇔

rcases (multiple_delta_bar v (Nat.max (FreeMonoid.length u) (FreeMonoid.length
v)) (Nat.max k1 k2)
v_length v_under) with ⇓u↓, hu↓, _⇔

exact Exists.intro u↓ (Exists.intro v↓ (hv↓.trans hu↓.symm))

Note that this has been implemented non-constructively; a constructive version is possible and
in the works!
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A.7 Cancellativity
A.7.1 Grids

/-- a grid modelling re-writes, inductively defined as a basic cells, or vertical
or horizontal closure under abutting entire sides -/

inductive grid : FreeMonoid N ≃ FreeMonoid N ≃ FreeMonoid N ≃ FreeMonoid N ≃
Prop

| empty : grid 1 1 1 1
| top_bottom (i : N) : grid 1 (of i) 1 (.of i)
| sides (i : N) : grid (of i) 1 (of i) 1
| top_left (i : N) : grid (of i) (of i) 1 1
| adjacent (i k : N) (h : i.dist k = 1) : grid (of i) (of k) (of i → of k) (of
k → of i)

| separated (i j : N) (h : i.dist j > 1) : grid (of i) (of j) (of i) (of j)
| vertical (h1: grid u v u↓ v↓) (h2 : grid a v↓ c d) : grid (u → a) v (u↓ → c) d
| horizontal (h1: grid u v u↓ v↓) (h2 : grid u↓ b c d) : grid u (v → b) c (v↓ → d)

/-- relating grid equivalence to braid equivalence, one way -/
theorem braid_eq_of_grid (h : grid a b c d) :

BraidMonoidInf.mk (a → d) = BraidMonoidInf.mk (b → c)

Splittability
def split_vertically (a b c d : FreeMonoid N) := ∋ b1 b2, b = b1 → b2 ≃

↙ u d1 d2, grid a b1 u d1 ∝ grid u b2 c d2 ∝ d = d1 → d2

theorem splittable_vertically_of_grid {a b c d : FreeMonoid N} (h : grid a b c d)
:
split_vertically a b c d

def split_horizontally (a b c d : FreeMonoid N) := ∋ a1 a2, a = a1 → a2 ≃
↙ u c1 c2, grid a1 b c1 u ∝ grid a2 u c2 d ∝ c = c1 → c2

theorem splittable_horizontally_of_grid {a b c d : FreeMonoid N} (h : grid a b c
d) :
split_horizontally a b c d

A.7.2 Determinative Spines

theorem determinative_one_one (h : grid 1 1 c d) : c = 1 ∝ d = 1

theorem determinative_left_one {b c d : FreeMonoid N} (h : grid 1 b c d) :
c = 1 ∝ d = b

theorem determinative_top_one {a c d : FreeMonoid N} (h : grid a 1 c d) :
c = a ∝ d = 1

theorem determinative_comm_rel {c d : FreeMonoid N} {i j : N} (h1 : i.dist j >
1) (h : grid (of i) (of j) c d) : c = of i ∝ d = of j

theorem determinative_braid_rel {c d : FreeMonoid N} {i j : N} (h1 : i.dist j =
1) (h : grid (of i) (of j) c d) : c = of i → of j ∝ d = of j → of i
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A.7.3 Stability

def stable (u v : FreeMonoid N) := ∋ a b, grid u v a b ≃ ∋ u↓ v↓,
BraidMonoidInf.mk u = BraidMonoidInf.mk u↓ ≃
BraidMonoidInf.mk v = BraidMonoidInf.mk v↓ ≃ ↙ a↓ b↓,

grid u↓ v↓ a↓ b↓ ∝ BraidMonoidInf.mk a = BraidMonoidInf.mk a↓ ∝
BraidMonoidInf.mk b = BraidMonoidInf.mk b↓

Lemmas to prove stability of all grids
theorem stable_far_apart (i j k : N) (h : Nat.dist j k >= 2) :
stable (FreeMonoid.of i) (FreeMonoid.of j → FreeMonoid.of k)

theorem stable_close (i j k : N) (h : Nat.dist j k = 1) : stable (FreeMonoid.of
i) (of j → of k → of j)

theorem stable_swap (u v : FreeMonoid N) : stable u v ≃ stable v u

theorem stable_first_one (v : FreeMonoid N) : stable 1 v

theorem stable_second_one (v : FreeMonoid N) : stable v 1

Then we have lemmas for the full proof, each of which requires the full inductive hypothesis:

theorem reg_helper (ih : ∋ (u v a b : FreeMonoid N), n ↘ u.length + b.length ≃
grid u v a b ≃ ∋ (u↓ v↓ : FreeMonoid N), BraidMonoidInf.mk u =
BraidMonoidInf.mk u↓ ≃ BraidMonoidInf.mk v = BraidMonoidInf.mk v↓ ≃ ↙ a↓ b↓,
grid u↓ v↓ a↓ b↓ ∝ BraidMonoidInf.mk a = BraidMonoidInf.mk a↓ ∝
BraidMonoidInf.mk b = BraidMonoidInf.mk b↓) (br : braid_rels_m_inf f g) (gr :
grid e (i → f → j) c d) (len : n + 1 ↘ e.length + d.length) : ↙ a↓ b↓, grid e
(i → g → j) a↓ b↓ ∝ BraidMonoidInf.mk c = BraidMonoidInf.mk a↓ ∝
BraidMonoidInf.mk d = BraidMonoidInf.mk b↓

theorem symm_helper (ih : ∋ (u v a b : FreeMonoid N), n ↘ u.length + b.length ≃
grid u v a b ≃ ∋ (u↓ v↓ : FreeMonoid N), BraidMonoidInf.mk u =
BraidMonoidInf.mk u↓ ≃ BraidMonoidInf.mk v = BraidMonoidInf.mk v↓ ≃ ↙ a↓ b↓,
grid u↓ v↓ a↓ b↓ ∝ BraidMonoidInf.mk a = BraidMonoidInf.mk a↓ ∝
BraidMonoidInf.mk b = BraidMonoidInf.mk b↓) (br : braid_rels_m_inf f g) (gr :
grid e (i → g → j) c d) (len : n + 1 ↘ e.length + d.length) : ↙ a↓ b↓, grid e
(i → f → j) a↓ b↓ ∝ BraidMonoidInf.mk c = BraidMonoidInf.mk a↓ ∝
BraidMonoidInf.mk d = BraidMonoidInf.mk b↓

-- a grid is stable when only the second element moves
theorem stable_second (ih : ∋ (u v a b : FreeMonoid N), n ↘ u.length + b.length

≃ grid u v a b ≃
∋ (u↓ v↓ : FreeMonoid N), BraidMonoidInf.mk u = BraidMonoidInf.mk u↓ ≃
BraidMonoidInf.mk v = BraidMonoidInf.mk v↓ ≃ ↙ a↓ b↓, grid u↓ v↓ a↓ b↓ ∝
BraidMonoidInf.mk a = BraidMonoidInf.mk a↓ ∝ BraidMonoidInf.mk b =
BraidMonoidInf.mk b↓)
(b_is : BraidMonoidInf.mk f = BraidMonoidInf.mk i) :
∋ (d : FreeMonoid N), n + 1 ↘ a.length + d.length ≃
∋ (c : FreeMonoid N), grid a f c d ≃ ↙ a↓ b↓, grid a i a↓ b↓ ∝
BraidMonoidInf.mk c = BraidMonoidInf.mk a↓ ∝ BraidMonoidInf.mk d =
BraidMonoidInf.mk b↓
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theorem stability (u v : FreeMonoid N) : stable u v := by
have H1 : ∋ t u v, ∋ a b, t >= u.length + b.length ≃ grid u v a b ≃ ∋ u↓ v↓,

BraidMonoidInf.mk u = BraidMonoidInf.mk u↓ ≃
BraidMonoidInf.mk v = BraidMonoidInf.mk v↓ ≃ ↙ a↓ b↓,
grid u↓ v↓ a↓ b↓ ∝ BraidMonoidInf.mk a = BraidMonoidInf.mk a↓ ∝
BraidMonoidInf.mk b = BraidMonoidInf.mk b↓ := by

intro t
induction t with
| zero =>

intro u _ _ _ length
have : u.length = 0 := by linarith [length]
rw [FreeMonoid.eq_one_of_length_eq_zero this]
exact stable_first_one _ _

| succ n ih =>
intro a b c d e f a1 b1 a_is b_is
revert c; revert d; revert b
apply PresentedMonoid.rel_induction_rw (PresentedMonoid.exact a_is)
· exact fun _ b b_is => stable_second ih b_is
· intro g i e f br b b_is d len c gr

have easy_len : n + 1 ↘ b.length + c.length := by
rw [⊤ grid_diag_length_eq gr]
exact len

rcases reg_helper ih br (grid_swap gr) easy_len with ⇓a1, b1,
swapped_grid, da, cb⇔

apply grid_swap at swapped_grid
have easy_len2 : n + 1 ↘ (e → i → f).length + a1.length := by

simp only [length_mul] at len
simp only [length_mul]
rw [⊤ BraidMonoidInf.length_eq da, ⊤ BraidMonoidInf.length_eq

(PresentedMonoid.sound (PresentedMonoid.rel_alone br))]
assumption

rcases stable_second ih b_is a1 easy_len2 b1 swapped_grid with ⇓a2, b2,
second_fact⇔

use a2, b2
exact ⇓second_fact.1, ⇓cb.trans second_fact.2.1, da.trans second_fact.2.2⇔⇔

· intro _ _ g i br b b_is d len c gr
have easy_len : n + 1 ↘ b.length + c.length := by

rw [⊤ grid_diag_length_eq gr]
exact len

rcases symm_helper ih br (grid_swap gr) easy_len with ⇓a1, b1,
swapped_grid, da, cb⇔

apply grid_swap at swapped_grid
rename_i x x2
have easy_len2 : n + 1 ↘ (g → x2 → i).length + a1.length := by

simp only [length_mul] at len
simp only [length_mul]
rw [⊤ BraidMonoidInf.length_eq da, BraidMonoidInf.length_eq

(PresentedMonoid.sound (PresentedMonoid.rel_alone br))]
assumption

rcases stable_second ih b_is a1 easy_len2 b1 swapped_grid with ⇓a2, b2,
second_fact⇔

use a2, b2
exact ⇓second_fact.1, ⇓cb.trans second_fact.2.1, da.trans second_fact.2.2⇔⇔

· intro ha1 hb1 hc1 ih b b_is d len c gr
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rcases ih.1 b b_is d len c gr with ⇓c1, d1, first_fact⇔
have H_len : n + 1 ↘ hb1.length + d1.length := by

have Hb : b1.length = b.length := (congr_arg BraidMonoidInf.length
b_is).symm

have Hc : c1.length = c.length := (congr_arg BraidMonoidInf.length
first_fact.2.1).symm

rw [⊤ grid_diag_length_eq (grid_swap first_fact.1), Hb, Hc,
⊤ grid_diag_length_eq gr]

exact len
rcases ih.2 b1 rfl d1 H_len c1 first_fact.1 with ⇓c2, d2, second_fact⇔
use c2, d2
exact ⇓second_fact.1, ⇓first_fact.2.1.trans second_fact.2.1,

first_fact.2.2.trans second_fact.2.2⇔⇔
exact fun c d => H1 (u.length + d.length) u v c d (Nat.le_refl _)

A.7.4 Existence and Uniqueness

theorem existence : ∋ a b, ↙ c d, grid a b c d := by
intro a b
rcases common_mul a b with ⇓c1, d1, h⇔
have big_grid : grid (a → c1) (b → d1) 1 1 := by

apply grid_of_eq
rw [h]

rcases splittable_horizontally_of_grid big_grid _ _ rfl with ⇓_, c1, c2,
top_grid, _, side_one⇔

rw [(FreeMonoid.prod_eq_one side_one.symm).1] at top_grid
rcases splittable_vertically_of_grid top_grid _ _ rfl with ⇓top_vert, m1, m2,
top_left, _, _⇔

use top_vert, m1

theorem unicity (h1 : grid a b c d) : ∋ c↓ d↓, grid a b c↓ d↓ ≃ c↓ = c ∝ d↓ = d
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A.8 Grids and Rewriting
A.8.1 Partial Grids Def

inductive cell : List N ≃ List N ≃ List N ≃ List N ≃ Prop
| empty : (cell [] [] [] [] : Prop)
| top_bottom (i : N) : cell [] [i] [] [i]
| sides (i : N) : cell [i] [] [i] []
| top_left (i : N) : cell [i] [i] [] []
| adjacent (i k : N) (h : Nat.dist i k = 1) : cell [i] [k] [i, k] [k, i]
| separated (i j : N) (h : i +2 → j ¬ j+2 <= i) : cell [i] [j] [i] [j]

lemma grid_from_cell (h : cell a b c d) : grid a b c d

def to_up (a : List N) : List (Option N ⇐ Bool) :=
match a with
| [] => [(none, false)]
| _ => List.map (fun x => (some x, false)) a.reverse

def to_over (a : List N) : List (Option N ⇐ Bool) :=
match a with
| [] => [(none, true)]
| _ => List.map (fun x => (some x, true)) a

/-- A partial grid generalizes the notion of a grid to include "unfinished"
grids. -/

inductive PartialGrid : List (Option N ⇐ Bool) ≃ List (Option N ⇐ Bool) ≃
List (Option N ⇐ Bool) ≃ List (Option N ⇐ Bool) ≃ List (Option N ⇐ Bool) ≃
Prop

| single_grid (h : cell a b c d): PartialGrid (to_up a) (to_over b) (to_over d)
[] (to_up c)

| empty (a b : List (Option N ⇐ Bool)) (ha : a.length > 0) (ha1 : is_false a)
(hb : b.length > 0) (hb : is_true b) : PartialGrid a b [] (a ++ b) []

| horizontal_append_one {a b bot up b2 bot2 mid2 up2} (g1 : PartialGrid a b bot
[] up)

(g2 : PartialGrid up b2 bot2 mid2 up2) : PartialGrid a (b ++ b2) (bot ++
bot2) mid2 up2

| horizontal_append {a b bot mid up b2 bot2 mid2 up2 : List (Option N ⇐ Bool)}
(h : mid.length > 0)
(g1 : PartialGrid a b bot mid up) (g2 : PartialGrid up b2 bot2 mid2 up2) :
PartialGrid a (b ++ b2) bot (mid ++ bot2 ++ mid2) up2

| vertical_append_one (g1 : PartialGrid a b bot [] up) (g2 : PartialGrid a1 bot
bot2 mid2 up2) :

PartialGrid (a1 ++ a) b bot2 mid2 (up2 ++ up)
| vertical_append (g1 : PartialGrid a b bot mid up) (g2 : PartialGrid a1 bot
bot2 mid2 up2) (h : mid.length > 0) :

PartialGrid (a1 ++ a) b bot2 (mid2 ++ up2 ++ mid) up

/-- this removes the symbols for empty arrows -/
def remover : (a : List (Option N ⇐ Bool)) ≃ List N

| [] => []
| (some a, _) :: c => a :: remover c
| (none, _) :: c => remover c

lemma remover_up : remover (to_up a) = a.reverse
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lemma remover_over : remover (to_over a) = a

lemma grid_option_append_horiz (h1 : grid_option a b c d) (h2 : grid_option c e f
g) : grid_option a (b ++ e) f (d ++ g)

lemma grid_option_append_vert (h1 : grid_option a b c d) (h2 : grid_option e d f
g) : grid_option (e ++ a) b (f ++ c) g

/-- this converts back from labelled arrows to labelled sides, and asserts that
we have a grid -/

def grid_option (a b c d : List (Option N ⇐ Bool)) : Prop := grid (remover
a.reverse) (remover b)

(remover c.reverse) (remover d)

/-- a partial grid with an empty middle frontier is in fact a grid (lemmas
referenced are available on github) -/

theorem grid_of_PartialGrid (h : PartialGrid a b d [] c) : grid_option a b c d :=
by

generalize he : ([] : List (Option N ⇐ Bool)) = e at h
induction h with
| single_grid h =>

unfold grid_option
simp only [remover_up_rev, remover_over]
exact grid_from_cell h

| empty a b =>
exfalso
apply congr_arg List.length at he
rename_i ha hb
simp [ha, hb] at he
linarith

| horizontal_append_one _ _ ih1 ih2 =>
specialize ih1 rfl
specialize ih2 he
exact grid_option_append_horiz ih1 ih2

| horizontal_append _ _ _ g1_ih g2_ih =>
simp only [List.append_assoc, List.nil_eq_append, List.append_eq_nil] at he
specialize g1_ih he.1.symm
specialize g2_ih he.2.2.symm
have H := grid_option_append_horiz g1_ih g2_ih
rw [he.2.1, List.append_nil] at H
exact H

| vertical_append_one _ _ ih1 ih2 =>
specialize ih1 rfl
specialize ih2 he
exact grid_option_append_vert ih1 ih2

| vertical_append _ _ _ g1_ih g2_ih =>
simp only [List.append_assoc, List.nil_eq_append, List.append_eq_nil] at he
specialize g1_ih he.2.2.symm
specialize g2_ih he.1.symm
have H := grid_option_append_vert g1_ih g2_ih
rw [he.2.1, List.nil_append] at H
exact H

A.8.2 Grid-style reversing
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inductive grid_style : List (Option N ⇐ Bool) ≃ List (Option N ⇐ Bool) ≃ Prop
| basic {n : N} : grid_style [(some n, false), (some n, true)] [(none, true),

(none, false)]
| over {n : N} : grid_style [(n, false), (none, true)] [(none, true), (n, false)]
| up {n : N} : grid_style [(none, false), (some n, true)] [(n, true), (none,

false)]
| empty : grid_style [(none, false), (none, true)] [(none, true), (none, false)]
| apart {i j : N} (h : Nat.dist i j > 1) : grid_style [(i, false), (j, true)]

[(j, true), (i, false)]
| close {i j : N} (h : Nat.dist i j = 1) : grid_style [(i, false), (j, true)]

[(j, true), (i, true), (j, false), (i, true)]

A.8.3 SemiThue

inductive SemiThue (rels : List ε ≃ List ε ≃ Prop) : List ε ≃ List ε ≃ Prop
| refl (a : List ε) : SemiThue rels a a
| reduction {a b c d : List ε} (h : rels a b) : SemiThue rels (c++a++d) (c++b++d)
| trans (a b c : List ε) : SemiThue rels a b ≃ SemiThue rels b c ≃ SemiThue

rels a c

inductive SemiThue_one_step (rels : List ε ≃ List ε ≃ Prop) : List ε ≃ List ε
≃ Prop

| refl (a : List ε) : SemiThue_one_step rels a a
| one_step {a b c d e : List ε} (h1 : SemiThue_one_step rels e (c++a++d)) (h2 :

rels a b) :
SemiThue_one_step rels e (c++b++d)

theorem one_step_equiv_reg {a b : List ε} : SemiThue rels a b ∅
SemiThue_one_step rels a b

A.8.4 Shortlex

def Shortlex {ε : Type→} (r : ε ≃ ε ≃ Prop) : List ε ≃ List ε ≃ Prop :=
fun a b => Prod.Lex (fun n1 n2 => n1 < n2) (fun a b => List.Lex r a b)
(a.length, a) (b.length, b)

theorem acc_empty {ε : Type→} (r : ε ≃ ε ≃ Prop) : Acc (Shortlex r) []

theorem acc_singleton {ε : Type→} (r : ε ≃ ε ≃ Prop) {h : WellFounded r} {i : ε
} : Acc (Shortlex r) [i]

theorem acc_pair {ε : Type→} (r : ε ≃ ε ≃ Prop) {h : WellFounded r} (i j : ε) :
Acc (Shortlex r) [i, j]

theorem lexAccessible↓ {a : ε} (n : N) (aca : Acc r a)
(acb : (b : List ε) ≃ b.length < n ≃ Acc (Shortlex r) b) (b : List ε) (hb :
b.length < n)
(ih : ∋ l : List ε, l.length < (a::b).length ≃ Acc (Shortlex r) l) :
Acc (Shortlex r) ([a] ++ b)

theorem wf {ε : Type→} (r : ε ≃ ε ≃ Prop) {h : WellFounded r} : WellFounded
(Shortlex r) := by

apply WellFounded.intro
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have H : ∋ n, ∋ (a : List ε), a.length = n ≃ Acc (Shortlex r) a := by
intro n
induction n using Nat.strongInductionOn
rename_i n ih
cases n with
| zero =>

intro a len_a
simp only [List.length_eq_zero] at len_a
rw [len_a]
exact acc_empty r

| succ n =>
intro a
cases a with
| nil =>

intro len_a
simp only [List.length_nil, self_eq_add_left, add_eq_zero, one_ne_zero,

and_false]
at len_a

| cons head tail =>
intro len_a
simp only [List.length_cons, Nat.succ_eq_add_one, add_left_inj] at len_a
apply lexAccessible↓ r (n+1)
· exact WellFounded.apply h head
· exact fun b bl => ih b.length bl _ rfl
· rw [len_a]

exact lt_add_one n
· intro l ll

apply ih l.length
simp only [List.length_cons, Nat.succ_eq_add_one] at ll
· rw [⊤ len_a]

exact ll
rfl

exact fun a => H a.length _ rfl

Showing well-foundedness of our relation on grid words

def lt_a : (Option N ⇐ Bool) ≃ Option N ⇐ Bool ≃ Prop
| (_, true), (_, false) => true
| (none, true), (some _, true) => true
| (some i, true), (some j, true) => i < j
| (some i, false), (some j, false) => i < j
| (some _, false), (none, false) => true
| (_, _), (_, _) => false

theorem lt_a_acc_none_true : Acc lt_a (none, true)
theorem lt_a_some_zero_true : Acc lt_a (some 0, true)
theorem lt_a_acc_some_true : Acc lt_a (some val, true)
theorem lt_a_acc_some_false : Acc lt_a (some val, false)
theorem lt_acc_none_false : Acc lt_a (none, false)

theorem lt_a_acc : ∋ (a : Option N ⇐ Bool), Acc lt_a a

instance : WellFounded lt_a := WellFounded.intro fun a ̸≃ lt_acc a
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